

Class: XIIth

Date:

Solutions

Subject : CHEMISTRY

DPP No. : 2

Topic :- Electro Chemistry

1 (a)

In the process of electro decomposition for purification of metal, impure metal acts as anode.

2 **(b)**

Specific conductivity (κ)

$$=\frac{1}{R} \times cell constant$$

Cell constant =
$$\kappa \times R$$

$$= 0.0129 \times 100 = 1.29$$

3 **(b)**

According to Nernst equation.

$$E_{\text{cell}} = E_{\text{Cell}}^{\circ} + \frac{0.0591}{2} \log \frac{[\text{Cu}^{2+}]}{[\text{Zn}^{2+}]}$$

$$E_{\text{cell}} = E_{\text{Cell}}^{\circ} - \frac{0.0591}{2} \log \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]}$$

Or
$$y = c + (-m)x$$

Thus, the slope is negative.

4 (a)

In MnO_4^- the oxidation number of Mn is + 7.

In the reaction, 5 electrons are involved hence 5 Faraday will be needed for the reduction of 1 mole of MnO_4^- .

Therefore, for 0.5 mole of MnO_4^- , number of Faradays required = 2.5 F

5 **(a**)

Anode is electrode at which oxidation occurs.

6 **(b**)

MnO₂ in Lechlanche cell.

7 **(d**)

As Cr has maximum oxidation potential value, therefore its oxidation should be easiest

8 **(d)**

More is reduction potential, more is the power to get itself reduced or greater is oxidising power.

$$F = N \times e$$

NaCl gives Na⁺ and Cl⁻ ions;

At anode :
$$Cl^- \rightarrow (1/2)Cl_2 + e$$

At cathode:
$$H^+ \rightarrow (1/2)H_2 + e$$

Electrons flow from Zn to Cu in outside circuit and current from Cu to Zn.

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

$$E_{\text{cell}} (\text{Au}^{3+} / \text{Au}) = 0.150 \text{ V}$$

$$E_{\text{cell}} (\text{Ni}^{2+} / \text{Ni}) = -0.25 \text{ V}$$

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

= 0.150 - (- 0.25)
= 0.15 + 0.25
= + 0.4 V

50 % H₂SO₄aqueous so<mark>lutio</mark>n can be electrolysed by using Pt electrodes as

$$2H_2SO_4 \rightarrow 2HSO_4^- + 2H^+$$

$$2HSO_4^- \rightarrow H_2S_2O_8 + 2e^-$$
 (at anode)

It is fact.

For the given cell,

$$E_{\rm cell} = E_{\rm cell}^{\circ} - \frac{0.0591}{2} log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

1.
$$E_1 = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{1}{0.1}$$

$$= E_{\text{cell}}^{\circ} - \frac{0.0591}{2}$$

2.
$$E_2 = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{1}{1}$$

$$= E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \times 0$$

$$= E_{\text{cell}}^{\circ}$$

3.
$$E_2 = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{0.1}{1}$$

$$= E_{\text{cell}}^{\circ} + \frac{0.0591}{2}$$

$$\therefore E_3 > E_2 > E_1$$

16 **(a)**

Transport number of an ion

 $= \frac{\text{current carried by that ion}}{\text{total current carried by both the ions}}$

17 **(c)**

Reduction is always carried out at cathode.

18 **(a)**

Reactions

(i)
$$Fe(s) \rightarrow Fe^{2+} + 2e^{-}, \quad E^{\circ} = + 0.44 \text{ V}$$

and
$$\Delta G_1^{\circ} = -nE^{\circ}F = -2 \times 0.44 \times F$$

(ii)
$$2H^+ + 2e^- + \frac{1}{2}O_2 \rightarrow H_2O(l)$$
; $E^{\circ} = +1.23 V$

and
$$\Delta G_2^{\circ} = -2 \times (+1.23) \times F$$

Net reaction,

Fe
$$(s) + 2H^{+} + \frac{1}{2}O_{2} \rightarrow Fe^{2+} + H_{2}O(l)$$

$$\Delta G_3^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ}$$

$$= -2 \times (+ 0.44) F + (- 2 \times 1.23 \times F)$$

$$= -0.88 \,\mathrm{F} \,\times -2.46 \,\mathrm{F} = -3.34 \,\mathrm{F}$$

$$= -3.34 \times 96500 \text{ J}$$

$$= -322.31 \text{ kJ} = -322 \text{ kJ}$$

19 **(b)**

2 faraday will deposit 2 eq. or 1 mole of Cu.

20 **(a**)

 Cl_2 is placed above F_2 in electrochemical series, halogen placed below replaces the other from its solution.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	В	В	A	A	В	D	D	D	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	D	В	D	D	A	C	A	В	A

