

Class : XIIth Date : Subject : CHEMISTRY DPP No. : 10

Topic :- Electro Chemistry

			<u> _ _ _ _ _ _ _ _ </u> _ _ _ _					
1.	The units of equivalent co	onductance, are						
	a) Ω cm ² equiv ⁻¹	b) Ω cm² equiv	c) Ω^{-1} cm ² equiv ⁻¹	d) Ω cm²equiv				
2.	For strong electrolytes the plot of molar conductance $ us\sqrt{\mathcal{C}}$ is							
	a) Parabolic	b) Linear	c) Sinusoidal	d) Circular				
3.	The value of Λ^{∞}_{eq} for NH ₄ Cl, NaOH and NaCl are respectively,149.74,248.1 and 126.4 Ω^{-1} cm 2							
equiv ⁻¹ . The value of Λ_{eq}^{∞} of NH ₄ OH is								
	a) 371.44		b) 271.44					
	c) 71.44		d) Cannot be predicted fr	om given data				
4.	4. The standard electrode potentials of Ag^+ / Ag is +0.80 V and Cu^+ /Cu is +0.34 V. These							
electrodes are connected throu <mark>gh As</mark> alt brid <mark>ge an</mark> d if								
	a) Copper electrode acts	a <mark>s Acat</mark> hode t <mark>hen E_{cell} is +0</mark>	0.46 V					
	b) Silver electrode acts as <mark>anode</mark> then <mark>E_{cell} i</mark> s -0.3 <mark>4 V</mark>							
	c) Copper electrode acts as anode then \vec{E}_{cell} is +0.46 V							
	d) Silver electrode acts as Acathode then E_{cell}° is -0.34 V							
5.	e.m.f. of cell Ni $ $ Ni ²⁺ (0.1 <i>M</i>)	7) <mark> Au³⁺(1.0 <i>M</i>) Au is, i</mark>	f E° for Ni ²⁺ Ni is — 0.25 V	, E° for Au ³⁺ Au				
is 1.50 V.								
	a) + 1.25 V	b) —1.75 V	c) + 1.75 V	d) + 4.0 V				
6.	The position of some metals in the electrochemical series in decreasing electropositive							
character is given as $Mg > Al > Zn > Cu > Ag$. What will happen, if a copper spoon is used to stir a								
solu	solution of aluminium nitrate?							
	a) The spoon will get coated with aluminium							
	b) An alloy of copper and aluminium is formed							
	c) The solution becomes	blue						
7	1) There is no reaction							
7.	which of the following sta	atements is correct? Galva	aic cell converts					
	 a) Chemical energy into electrical energy b) Electrical energy into chemical energy c) Metal from its elemental state to the combined state d) Electrolyte into individual ions 							
	uj mech olyte mto mulvit	iuai 10115						

8.	For cell reaction,							
$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$								
Cell representation is								
	a) Zn Zn ²⁺ Cu ²⁺ Cub)		Cu Cu ²⁺ Zn ²⁺ Zn					
	c) Cu Zn ²⁺ Zn Cu ²⁺ d)		Cu ²⁺ Zn Zn ²⁺ Cu					
9.	By passing 9.65 A current for 16 min 40 s , the volume of ${ m O}_2$ liberated at STP will be							
	a) 280 mL	b) 560 mL	c) 1120 mL	d) 2240 mL				
10.	Consider the following	disproportionation						
$2ClO_{\overline{3}} \rightleftharpoons ClO_{\overline{2}} + ClO_{\overline{4}}$								
If the initial concentration of perchlorate ion is 0.1 M what it would be at equilibrium at 298 K?								
$(E^{\circ}_{\text{ClO}_{4} / \text{ClO}_{3}} = 0.36 \text{ V and } E^{\circ}_{\text{ClO}_{3} / \text{ClO}_{2}} = 0.33 \text{ V})$								
	a) 0.1 M	b) 0.05 M	c) 0.07 M	d) 0.19 M				
11.	. When Cu reacts with $AgNO_3$ solution, the reaction takes place is							
	a) Oxidation of Cu	b) Reduction of Cu	c) Oxidation of Ag	d) Reduction				
of NO ₃								
12.	E° for $F_{2+} + 2e = 2F^{-}$ is 2.	8 V, E° for $1/2 F_2 + e = F^-$	is:					
	a) 2.8 V	b) 1.4 V	c) - 2.8 V	d) – 1.4 V				
13.	Which one of the following	g <mark>solutions has</mark> highest con	ductance power?					
	a) 0.1 <i>M</i> CH ₃ COOH	b) 0.1 <i>M</i> NaCl	c) 0.1 <i>M</i> KNO ₃	d) 0.1 <i>M</i> HCl				
14.	4. Standard electrode potentials of $Fe^{2+} + 2e \rightarrow Fe$ and $Fe^{+} + 3e \rightarrow Fe$ are -440 V and -0.036 V							
resp	pectively. The standard elec	t <mark>rode</mark> potent <mark>ial (E</mark> °) for Fe	$^{3+} + e \longrightarrow Fe^{2+}$ is:					
	a) – 0.476 V	b) — 0.404 V	c) + 0.404 V	d) + 0.772 V				
15.	Stainless steel does not rus	t <mark>beca</mark> use						
	a) Chromium and nickel co <mark>mbin</mark> e with iron							
	b) Chromium forms an oxi <mark>de lay</mark> er and protects iron from rusting							
	c) Nickel present in it, does not rust							
	d) Iron forms Ahard chem	ical compound with chron	nium present in it					
16.	Cu(II) sulphate solution is	treated separately with K	Cl and KI. In which case, Cu	²⁺ be reduced				
to C	u ⁺ ?							
	a) With KCl	b) With KI	c) With both (a) and (b)	d) None of				
these								
17.	The main function of the salt bridge is :							
	a) To allow ions to go from one cell to another							
	b) To provide link between two half cellsc) To keep the e.m.f. of the cell positived) To maintain electrical neutrality of the cellution in two half cells							
10	u) to maintain electrical neutrality of the solution in two half cells When 0.65 C of electricity is passed through a solution of eityer nitrate (stomic weight of A_{2} =							
10. When 9.05 C of electricity is passed in ough a solution of silver initiate (atomic weight of Ag = 107.87 taking as 108) the amount of silver denosited is								
107	$\frac{100}{100}$, the allo	b) 10.8 mg	c) 15.8 mg	d) $20.8 mg$				
	aj 5.0 mg	0 10.0 IIIg	cj 15.0 mg	uj 20.0 mg				

- 19. The oxidation number of S in $Na_2S_4O_6$ is
 - a) 2.5 for each S atom
 - b) +2 and +3 (two S have +2 and other two have +3)
 - c) +2 and +3 (three S have +2 and one S has +3)
 - d) +5 and 0 (two S have +5 and other two have zero)

20. E° values of Mg²⁺ / Mg is -2.37 V, of Zn²⁺ / Zn is -0.76 V and Fe²⁺ / Fe is -0.44 V. Which of the statements is correct?

a) Zn will reduce Fe²⁺

b) Zn will reduce Mg²⁺

c) Mg oxidises Fe

d) Zn oxidises Fe

