

Class : XIIth Date : Subject : CHEMISTRY DPP No. : 1

Topic :- Electro Chemistry

1. The desired amount of charge for obtaining one mole of Al from Al³⁺ is a) 96500 C b) 2 × 96500 C c) 3 × 96500 C d) $\frac{96500}{2}$ C

2. A certain current liberates 0.504 g of hydrogen in 2 hr. How many gram of copper can be liberated by the same current flowing for the same time in CuSO₄solution?
a) 12.7 b) 16 c) 31.8 d) 63.5

- 3. If the E_{cell}° for a given reaction has a negative value, then which of the following gives the correct relationships for the value of ΔG° and K_{eq} ? a) $\Delta G^{\circ} > 0$; $K_{eq} < 1$ b) $\Delta G^{\circ} > 0$; $K_{eq} > 1$ c) $\Delta G^{\circ} < 0$; $K_{eq} > 1$ d) $\Delta G^{\circ} < 0$; $K_{eq} < 1$
- 4. The Edison storage cell is represented as : $Fe(s) + FeO(s) | KOH(aq) | Ni_2O_3(s) | Ni_2O_3(s) | Ni(s)$ The half reactions are $Ni_2O_3(s) + H_2O(l) + 2e^- \rightarrow 2NiO(s) + 2OH^-$; $E^\circ = +0.40 V$ $FeO(s) + H_2O(l) + 2e^- \rightarrow Fe(s) + 2OH^-$; $E^\circ = -0.87 V$

Choose the incorrect statement

- a) E_{anode} increases with increase in concentration of OH⁻
- b) E_{cathode} decreases with increase in concentration of OH⁻
- c) $E_{\text{cell}}^{\circ} = 1.27 \text{ V}$
- d) $E_{\rm cell}$ increases with increase in concentration of FeO
- 5. Standard reduction potentials of the half reactions are given below :

 $\begin{array}{ll} F_{2}(g) + 2e^{-} \rightarrow 2F^{-}(aq); & E^{\circ} = \ + \ 2.85 \ V \\ Cl_{2}(g) + 2e^{-} \rightarrow 2Cl^{-}(aq); & E^{\circ} = \ + \ 1.36 \ V \\ Br_{2}(l) + 2e^{-} \rightarrow 2Br^{-}(aq); & E^{\circ} = \ + \ 1.06 \ V \\ I_{2}(s) + 2e^{-} \rightarrow 2I^{-}(aq); & E^{\circ} = \ + \ 0.53 \ V \\ The strongest oxidising and reducing agents respectively are : \\ a) \ F_{2} \ and \ I^{-} \qquad b) \ Br_{2} \ and \ Cl^{-} \qquad c) \ Cl_{2} \ and \ Br^{-} \qquad d) \ Cl_{2} \ and \ I_{2} \end{array}$

6. The standard reduction potential for Fe²⁺|Fe and Sn²⁺|Sn electrodes are -0.44 V and -0.14 V respectively. For the cell reaction, Fe²⁺ + Sn \rightarrow Fe + Sn²⁺, the standard e.m.f. is:

7.	a) They are unstableb) The water dissolvesc) The force of repulsion	olved in water dissociat		d) — 0.30 V
8.	Which ion has exceptic a) H ⁺	bnally higher Λ^{∞} values? b) K ⁺	c) NH ₂	d)OH
9.	Limiting molar ionic conductivities of a uni-univalent electrolyte are 57 and 73. The limiting molar conductivity of the solution will be : a) $130 S \text{ cm}^2 \text{ mol}^{-1}$ b) $65 S \text{ cm}^2 \text{ mol}^{-1}$ c) $260 S \text{ cm}^2 \text{ mol}^{-1}$ d) $187 S \text{ cm}^2 \text{ mol}^{-1}$			
10.	Molten NaCl conducts a) Free electrons	electricity due to the pro b) Free molecules		d) Atoms of Na and Cl
11.	The emf of the cell, $(E_Z$ Zn / Zn ²⁺ (1 M) Cu ²⁺ $(E_{Cu^{2+}/Cu} = + 0.34 V)$ a) +1.10 V	(1 M) Cu	c) +0.42 V	d)-0.42 V
12.	Which represents a con $PtH_2 HCl HCl PtH_2$ a) c_1 c_2		c) Zn Zn ²⁺ Cu ²⁺ Cu	d)Fe Fe ²⁺ Cu ²⁺ Cu
13.	In electrolysis of aqueo a) O_2 and H_2	bus copper sulphate, the b) H_2 and O_2	e gas at anode and cathoo c) SO ₂ and H ₂	de are d) SO ₃ and O ₂
14.	14. Consider the reaction, $M^{n+}(aq) + ne \rightarrow M^0$ (<i>s</i>). The standard reduction potential values of the metals M_1, M_2 and M_3 are $-0.34 \text{ V}, -3.05 \text{ V}$ and -1.66 V respectively. The order of their reducing power will be : a) $M_1 > M_2 > M_3$ b) $M_3 > M_2 > M_1$ c) $M_1 > M_3 > M_2$ d) $M_2 > M_3 > M_1$			
15.	The charge required to a) 96500 F	b liberate one gram equi b) 1 F	valent of an element is c) 1 C	d)None of these
16.	What will be pH of aqu $O_4(aq)$ between graph a) pH = 14.0		lyte in electrolytic cell d c) pH < 7.0	uring electrolysis of CuS d)pH = 7.0

- 17. In an electrolytic cell, the anode and cathode are respectively represented as :
 - a) Positive electrode, negative electrode
 - b) Negative electrode, positive electrode
 - c) Both positive and negative electrode
 - d) None of the above
- 18. The cell reaction is spontaneous, when a) E_{red}° is negative b) E_{red}° is positive c) ΔG° is negative d) ΔG° is positive 19. The emf of the cell Mg| Mg²⁺(0.01 M)|| Sn²⁺(0.1 M)|Sn at 298 K is (Given, $E_{Mg^{2+}, Mg}^{\circ} = -2.34$ V,
- 19. The emf of the cell Mg| Mg²⁺(0.01 M)|| Sn²⁺(0.1 M)|Sn at 298 K is (Given, $E_{Mg^{2+},Mg} = -2.34 V$, $-2.34 V, E_{Sn^{2+},Sn}^{\circ} = -0.14 V$) a) 2.23 V b) 1.86 V c) 1.56 V d) 3.26 V
- 20. When an aqueous solution of lithium chloride is electrolysed using graphite electrodes :
 - a) pH of the resulting solution increases
 - b) pH of the resulting solution decreases
 - c) As the current flows, pH of the solution around the cathode increases
 - d) None of the above

