Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 9

Topic :- ELECTROSTATIC POTENTIAL AND CAPACITANCE

1
(a)

Since the two spheres are joined by a wire, their potential are equal $i e$,
$\frac{q_{1}}{4 \pi \varepsilon_{0} R_{1}}=\frac{q_{2}}{4 \pi \varepsilon_{0} R_{2}} \Rightarrow \frac{q_{1}}{q_{2}}=\frac{R_{1}}{R_{2}}$
Now, $\quad \sigma_{1}=\frac{q_{1}}{4 \pi \varepsilon_{0} R_{1}^{2}}$
And

$$
\sigma_{2}=\frac{q_{2}}{4 \pi \varepsilon_{0} R_{2}^{2}},
$$

Hence $\frac{\boldsymbol{\sigma}_{2}}{\boldsymbol{\sigma}_{1}}=\frac{\boldsymbol{\sigma}_{2}}{\boldsymbol{\sigma}_{1}} \times \frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}^{2}}=\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)^{2}$
$\Rightarrow \frac{\sigma_{2}}{\sigma_{1}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
(d)
($n-1$) capacitors are made by n plates and all are connected in parallel because plates are connected alternately.
\therefore Total capacitance $=(n-1) x$
(c)

The capacitance of air capacitor
$C=\frac{\varepsilon_{0} A}{d}$
When a dielectric slab of thickness $t=\frac{d}{2}$ is inserted between plates, the capacity becomes
$C^{\prime}=\frac{A \varepsilon_{0}}{d-\frac{d}{2}\left(1-\frac{1}{K}\right)}$
$\frac{4}{3} \frac{A \varepsilon_{0}}{d}=\frac{\varepsilon_{0} A}{d-\frac{d}{2}\left(1-\frac{1}{K}\right)}$
$3 d=4 d\left(1-\frac{1}{2}+\frac{1}{2 K}\right)$
$3=4\left(\frac{1}{2}+\frac{1}{2 K}\right)$
or $\quad \frac{4}{2 K}=3-2$
or $K=2$
(a)
$r_{b}-r_{a}=1 \mathrm{~mm}=10^{-3} \mathrm{~m}$
From $\quad C=\frac{4 \pi \varepsilon_{0} r_{a} r_{b}}{r_{b}-r_{a}}$
$10^{-6}=\frac{1\left(r_{b}-10^{-3}\right) r_{b}}{9 \times 10^{9}\left(10^{-3}\right)}$
$r_{b}^{2}=9, r_{b}=3 \mathrm{~m}$
(d)

In Ist case, when charge $+Q$ is situated at C .

Electric potential energy of system
$U_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{(q)(-q)}{2 L}+\frac{1}{4 \pi \varepsilon_{0}} \frac{(-q) Q}{L}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q Q}{L}$
In IInd case, when charge $+Q$ is moved from C to D.

Electric potential energy of system in that case
$U_{2}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{(q)(-q)}{2 L}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q Q}{3 L}+\frac{1}{4 \pi \varepsilon_{0}} \frac{(-q)(Q)}{L}$
\therefore Work done $=\Delta U=U_{2}-U_{1}$
$=\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{2 L}+\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{3 L}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{L}\right)$
$-\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{2 L}+\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{L}+\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{L}\right)$
$=\frac{q Q}{4 \pi \varepsilon_{0}} \cdot\left[\frac{1}{3 L}-\frac{1}{L}\right]$

$$
\begin{aligned}
& =\frac{q Q}{4 \pi \varepsilon_{0}} \frac{(1-3)}{3 L} \\
& =\frac{-2 q Q}{12 \pi \varepsilon_{0} L}=-\frac{q Q}{6 \pi \varepsilon_{0} L}
\end{aligned}
$$

(c)
$C_{0}=\frac{\varepsilon_{0} A}{d}=18$
$C_{0}=\frac{K \varepsilon_{0} A}{3 d}=72$
Dividing Eq. (ii) by Eq. (i)
$\frac{k}{3}=\frac{72}{18}=4$
$K=12$
(d)
$\frac{1}{C_{s}}=\frac{1}{1}+\frac{1}{1}+\frac{1}{1}=3$
$C_{s}=\frac{1}{3}$
Capacitance between A and B
$C_{p}=\frac{1}{3}+1$
$\frac{4}{3} \mu \mathrm{~F}=1.33 \mu \mathrm{~F}$
(c)

Here,
$\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}=\left(+\frac{\sigma}{2 \varepsilon_{0}}\right)(-\hat{\mathrm{k}})+\left(\frac{2 \sigma}{2 \varepsilon_{0}}\right)(-\hat{\mathrm{k}})+\left(\frac{\sigma}{2 \varepsilon_{0}}\right)(-\hat{\mathrm{k}})$
$=-\left(\frac{2 \sigma}{\varepsilon_{0}}\right) \cdot \hat{k}$
(a)
$V=\frac{\sum q}{4 \pi \varepsilon_{0} r}=\frac{-10+10}{4 \pi \varepsilon_{0} r}=0$
(b)

Linear momentum of electron, $p_{e}=\sqrt{2 m_{e} e V}$
Linear momentum of photon, $p_{p}=\sqrt{2 m_{p} \mathrm{eV}}$
$\frac{p_{e}}{p_{p}}=\frac{\sqrt{2 m_{e} e V}}{\sqrt{2 m_{p} e V}}$
$\frac{p_{e}}{p_{p}}=\sqrt{\frac{m_{e}}{m_{p}}}$

Number of capacitors to be connected in series
$V=\frac{\text { valtage rating required }}{\text { voltage rating of given capacitor }}=\frac{700}{200}=3.5 i e, 4$
$C_{\text {eq }}=\frac{10}{4}=2.5 \mu \mathrm{~F}$
Number of rows required
$=\frac{\text { capacitor required }}{\text { capacity of each row }}=\frac{10}{2.5}=4$
\therefore total number of capacitors required $=4 \times 4=16$
(a)

Net capacity of 5 capacitors joined in parallel $=5 \times 2=10 \mu \mathrm{~F}$. now it is connected with two capacitors of $2 \mu \mathrm{~F}$ each in series, hence equivalent capacitance is $\frac{10}{11} \mu \mathrm{~F}$.
(d)

On bringing the changed metal plates closer, electric field $\overrightarrow{\mathrm{E}}$ in the intervening space is

$E=\frac{\sigma_{1}}{2 \varepsilon_{0}}-\frac{\sigma_{2}}{2 \varepsilon_{0}}=\frac{\sigma_{1}}{2 A \varepsilon_{0}}-\frac{\sigma_{2}}{2 A \varepsilon_{0}}$
Or $E=\frac{Q_{1}-Q_{2}}{2 A \varepsilon_{0}}=\frac{V}{d}$ or $V=\frac{\left(Q_{1}-Q_{2}\right) d}{2 A \varepsilon_{0}}$
$\Rightarrow \quad V=\frac{Q_{1}-Q_{2}}{2 C} \quad\left(\therefore C=\frac{\varepsilon_{0} A}{d}\right)$
(c)

Potential energy
$U=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r}$
Or $U \propto \frac{1}{r}$
When r decreases U increases and vice - versa. Moreover, potential energy as well as force is positive, if there is repulsion between the particles and negative if there is attraction.

7 (b)
Work done = potential energy of configuration of charges
$\frac{1}{4 \pi \varepsilon_{0} a}[q(-q)+(9-q) q+q(-q)+(-q)(q)]+\frac{(-q)(-q)+q^{2}}{4 \pi \varepsilon_{0} a \sqrt{2}}$

$$
=\frac{1}{4 \pi \varepsilon_{0}}\left[-\frac{4 q^{2}}{a}+\frac{2 q^{2}}{a \sqrt{2}}\right]=-\frac{2.6}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a}
$$

(c)

$$
\begin{equation*}
C=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \tag{i}
\end{equation*}
$$

where $C_{1}=\frac{K_{1} \varepsilon_{0} A}{d / 3}$
And $\quad C_{2}=\frac{K_{2} \varepsilon_{0} A}{2 d / 3}$
It is given that $\frac{\varepsilon_{0} A}{d}=9 \mathrm{pF}$
On substituting Eqs. (ii)and (iii)in Eq. (i), we get the result

$$
C_{\mathrm{eq}}=40.5 \mu \mathrm{~F}
$$

(b)
$C=\frac{A \varepsilon_{0}}{d}$
After inserting the slab
$C^{\prime}=\frac{A \varepsilon_{0}}{(d-b)}=\frac{A \varepsilon_{0}}{d-\frac{d}{2}}$
$C^{\prime}=\frac{2 A \varepsilon_{0}}{d} \quad \therefore \frac{C^{\prime}}{C}=\frac{2}{1}$
(d)

Net electric flux of surface
$\left(\phi_{2}-\phi_{1}\right)=\frac{1}{\varepsilon_{0}}(q) \Rightarrow q=\varepsilon_{0}\left(\phi_{2}-\phi_{1}\right)$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	A	D	C	A	D	C	D	C	C	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	B	A	B	A	D	C	B	C	B	D		

