

Class: XIIth Date:

Solutions

Subject: PHYSICS

DPP No.:9

Topic:- ELECTROSTATIC POTENTIAL AND CAPACITANCE

1 (a)

Since the two spheres are joined by a wire, their potential are equal ie,

$$\frac{q_1}{4\pi\epsilon_0 R_1} = \frac{q_2}{4\pi\epsilon_0 R_2} \Rightarrow \frac{q_1}{q_2} = \frac{R_1}{R_2}$$

Now,
$$\sigma_1 = \frac{q_1}{4\pi\epsilon_0 R_1^2}$$

And
$$\sigma_2 = \frac{q_2}{4\pi\epsilon_0 R_2^2}$$
,

Hence
$$\frac{\sigma_2}{\sigma_1} = \frac{\sigma_2}{\sigma_1} \times \frac{R_1^2}{R_2^2} = \left(\frac{R_2}{R_1}\right) \left(\frac{R_1}{R_2}\right)^2$$

$$\Rightarrow \frac{\sigma_2}{\sigma_1} = \frac{R_1}{R_2}$$

2 (d)

(n-1) capacitors are made by n plates and all are connected in parallel because plates are connected alternately.

 \therefore Total capacitance = (n-1)x

3 (c)

The capacitance of air capacitor

$$C = \frac{\varepsilon_0 A}{d}$$

When a dielectric slab of thickness $t=\frac{d}{2}$ is inserted between plates, the capacity becomes

$$C' = \frac{A\varepsilon_0}{d - \frac{d}{2}\left(1 - \frac{1}{K}\right)}$$

$$\frac{4}{3}\frac{A\varepsilon_0}{d} = \frac{\varepsilon_0 A}{d - \frac{d}{2}\left(1 - \frac{1}{K}\right)}$$

$$3d = 4d\left(1 - \frac{1}{2} + \frac{1}{2K}\right)$$
$$3 = 4\left(\frac{1}{2} + \frac{1}{2K}\right)$$

$$3 = 4\left(\frac{1}{2} + \frac{1}{2K}\right)$$

or
$$\frac{4}{2K} = 3 - 2$$

or
$$K=2$$

4 **(**a

$$r_b - r_a = 1$$
mm = 10^{-3} m

From
$$C = \frac{4\pi\varepsilon_0 r_a r_b}{r_b - r_a}$$

$$10^{-6} = \frac{1(r_b - 10^{-3})r_b}{9 \times 10^9 (10^{-3})}$$

$$r_b^2 = 9, r_b = 3$$
m

5 **(d**

In Ist case, when charge +Q is situated at C.

$$\begin{array}{c|cccc}
+q & +Q & -q \\
\hline
A & B & C \\
\hline
-L & -L & -L \\
\hline
& 2L & -L \\
\hline
\end{array}$$

Electric potential energy of system

$$U_1 = \frac{1}{4\pi\varepsilon_0} \frac{(q)(-q)}{2L} + \frac{1}{4\pi\varepsilon_0} \frac{(-q)Q}{L} + \frac{1}{4\pi\varepsilon_0} \cdot \frac{qQ}{L}$$

In IInd case, when charge + Q is moved from C to D.

Electric potential energy of system in that case

$$U_2 = \frac{1}{4\pi\varepsilon_0}.\frac{(q)(-q)}{2L} + \frac{1}{4\pi\varepsilon_0}.\frac{qQ}{3L} + \frac{1}{4\pi\varepsilon_0}\frac{(-q)(Q)}{L}$$

∴ Work done = $\Delta U = U_2 - U_1$

$$= \left(\frac{1}{4\pi\varepsilon_0} \frac{q^2}{2L} + \frac{1}{4\pi\varepsilon_0} \frac{qQ}{3L} - \frac{1}{4\pi\varepsilon_0} \frac{qQ}{L}\right)$$

$$-\left(\frac{1}{4\pi\varepsilon_0}\frac{q^2}{2L} + \frac{1}{4\pi\varepsilon_0}\frac{qQ}{L} + \frac{1}{4\pi\varepsilon_0}\frac{qQ}{L}\right)$$

$$= \frac{qQ}{4\pi\varepsilon_0} \cdot \left[\frac{1}{3L} - \frac{1}{L} \right]$$

$$=\frac{qQ}{4\pi\varepsilon_0}\frac{(1-3)}{3L}$$

$$=\frac{-2qQ}{12\pi\varepsilon_0 L}=-\frac{qQ}{6\pi\varepsilon_0 L}$$

$$C_0 = \frac{\varepsilon_0 A}{d} = 18$$

$$C_0 = \frac{a}{\frac{K\varepsilon_0 A}{3d}} = 72$$

Dividing Eq. (ii) by Eq. (i)

$$\frac{k}{3} = \frac{72}{18} = 4$$

$$K = 12$$

$$\frac{1}{C_s} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = 3$$

$$C_s = \frac{1}{3}$$

Capacitance between A and B

$$C_p = \frac{1}{3} + 1$$

$$\frac{4}{3}\mu F = 1.33\mu F$$

Here,

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 = \left(+ \frac{\sigma}{2\varepsilon_0} \right) (-\hat{\mathbf{k}}) + \left(\frac{2\sigma}{2\varepsilon_0} \right) (-\hat{\mathbf{k}}) + \left(\frac{\sigma}{2\varepsilon_0} \right) (-\hat{\mathbf{k}})$$

$$= -\left(\frac{2\sigma}{\varepsilon_0}\right).\hat{\mathbf{k}}$$

$$V = \frac{\sum q}{4\pi\varepsilon_0 r} = \frac{-10 + 10}{4\pi\varepsilon_0 r} = 0$$

Linear momentum of electron, $p_e = \sqrt{2m_e eV}$

Linear momentum of photon, $p_p = \sqrt{2m_peV}$

$$\frac{p_e}{p_p} = \frac{\sqrt{2m_e eV}}{\sqrt{2m_p eV}}$$

$$\frac{p_e}{p_p} = \sqrt{\frac{m_e}{m_p}}$$

Number of capacitors to be connected in series

$$V = \frac{\text{valtage rating required}}{\text{voltage rating of given capacitor}} = \frac{700}{200} = 3.5ie, 4$$

$$C_{\rm eq} = \frac{10}{4} = 2.5 \mu F$$

Number of rows required

$$= \frac{\text{capacitor required}}{\text{capacity of each row}} = \frac{10}{2.5} = 4$$

 \therefore total number of capacitors required = $4 \times 4 = 16$

14 (a

Net capacity of 5 capacitors joined in parallel = $5 \times 2 = 10 \ \mu F$. now it is connected with two capacitors of 2 μF each in series, hence equivalent capacitance is $\frac{10}{11} \mu F$.

15 **(d)**

On bringing the changed metal plates closer, electric field \vec{E} in the intervening space is

16 **(c)**

Potential energy

$$U = \frac{q_1 q_2}{4\pi \varepsilon_0 r}$$

Or
$$U \propto \frac{1}{\pi}$$

When r decreases U increases and vice-versa. Moreover, potential energy as well as force is positive, if there is repulsion between the particles and negative if there is attraction.

17 **(b**)

Work done =potential energy of configuration of charges

$$\frac{1}{4\pi\varepsilon_0 a} [q(-q) + (9-q)q + q(-q) + (-q)(q)] + \frac{(-q)(-q) + q^2}{4\pi\varepsilon_0 a\sqrt{2}}$$

$$= \frac{1}{4\pi\varepsilon_0} \left[-\frac{4q^2}{a} + \frac{2q^2}{a\sqrt{2}} \right] = -\frac{2.6}{4\pi\varepsilon_0} \frac{q^2}{a}$$

where
$$C_1 = \frac{K_1 \varepsilon_0 A}{d/3}$$
 ...(ii)

And
$$C_2 = \frac{K_2 \varepsilon_0 A}{2d/3}$$
 ...(iii)

It is given that $\frac{\varepsilon_0 A}{d} = 9 \text{pF}$

On substituting Eqs. (ii) and (iii) in Eq. (i), we get the result

$$C_{eq} = 40.5 \mu F$$

$$C = \frac{A\varepsilon_0}{d}$$

After inserting the slab

$$C' = \frac{A\varepsilon_0}{(d-b)} = \frac{A\varepsilon_0}{d - \frac{d}{2}}$$

$$C' = \frac{2A\varepsilon_0}{d} \quad \therefore \frac{C'}{C} = \frac{2}{1}$$

20 **(d**

Net electric flux of surface

$$(\phi_2 - \phi_1) = \frac{1}{\varepsilon_0}(q) \Rightarrow q = \varepsilon_0(\phi_2 - \phi_1)$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	D	С	A	D	С	D	С	С	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	A	В	A	D	С	В	С	В	D

