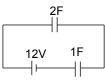


Subject: PHYSICS DPP No.: 8 Class: XIIth Date:


Topic:-ELECTROSTATIC POTENTIAL AND CAPACITANCE				
1.	=	=	-	erence between its surface and tensity at a distance $3r$ is
	V	b) $\frac{V}{2r}$	c) $\frac{V}{6r}$	$d)\frac{V}{4\pi}$
	a) $\frac{v}{2r}$	$\frac{10}{3r}$	$\frac{c}{6r}$	$\frac{\mathrm{d}}{4r}$
2.	Six identical capacit	tors are joined in paral	lel, charged to a poten	tial difference of 10 V,
	separated and then connected in series, ie, the positive plate of one is connected to negative			
	plate of other. Then potential difference between free plates is			
	a) 10 V	b) 30 V	c) 60 V	d) $\frac{10}{6}V$
				Ü
3.			<mark>al negative point charg</mark>	ges of 2μC each held 1m apart
	in air is $(k = 9 \times 10)$			2
	a) 36J	b) 3.6×10^{-3} J		d) 3.6×10^{-2} J
4.			face are $5 \times 10^{\circ}$ and 4	$ imes 10^5$ MKS units respectively,
		ide the s <mark>urfac</mark> e will be	1070	70
_	=			d) 6.85×10^{-7} C
5.	A charge $(-q)$ and another charge $(+Q)$ are kept at two points A and B respectively. Keeping			
	the charge $(+Q)$ fixed at B , the charge $(-q)$ at A is moved to another point C such that ABC forms an equilateral triangle of side l . The net work done in moving the charge $(-q)$ is			
		- 4 0		
	a) $\frac{1}{4\pi\varepsilon_0} \frac{Qq}{l}$	b) $\frac{1}{4\pi\varepsilon_0} \frac{Qq}{l^2}$	c) $\frac{1}{4\pi\varepsilon_0}$ Qql	d) Zero
6.	Potential energy of two equal negative point charges $2\mu C$ each held 1 m apart in air is			
0.	a) 2 J	b) 2 eV	c) 4 J	d) 0.036 J
7.	* *	,	, ,	R with a charge Q_2 at the
	centre I s			
	Q_1Q_2	b) Zero	Q_1Q_2	d) Infinite
	a) $\frac{\epsilon^{162}}{4\pi\varepsilon_0 R^2}$,	c) $\frac{\epsilon_1 \epsilon_2}{4\pi \epsilon_0 R}$.,
8.	The electric potential at a point (x,y) in the $x-y$ plane is given by			
	V = -Kxy			
	The electric field intensity at a distance r from the origin varies as			
	a) r^2	b) <i>r</i>	c) 2 <i>r</i>	d) $2r^2$
9.	,	•		having potential difference 25
	Vis	<u> </u>	<u>*</u>	<u> </u>

- a) 8×10^{-18} J
- b) 8×10^{-19} J
- c) 8×10^{-20} J
- d)8 × 10^{-16} J
- 10. Two parallel large thin metal sheets have equal surface charge densities ($\sigma = 26.4 \times 10^{-12}$ Cm⁻²)of opposite signs. The electric field between these sheets is
 - a) 1.5 NC^{-1}
- b) $1.5 \times 10^{-10} \text{NC}^{-1}$
- c) 3 NC^{-1}
- d) $3 \times 10^{-10} \, \text{NC}^{-1}$
- 11. The electrostatic potential energy between proton and electron separated by a distance 1\AA is
 - a) 13.6eV
- b) 27.2eV
- c) 14.4eV
- d) 1.44eV

12. Equivalent capacitance between *A* and *B* is

- a) 14 μF
- b) 4 μF
- c) 6 µF
- d) 2 μF
- 13. In a circuit shown in figure, the potential difference across the capacitor of 2 F is

a) 8 V

b) 4 V

c) 12

- d)6 V
- 14. A 10 μ C capacitor is charged to a potential difference of 50 V and is connected to another uncharged capacitor in parallel. Now the common potential difference becomes 20 V. The capacitance of second capacitor is
 - a) 15 μF
- b) 30 μF
- c) 20 µF
- d) 10 μF
- 15. An air parallel plate capacit<mark>or ha</mark>s capacity *C*. The capacity and distance between plates are doubled when immersed in a liquid then dielectric constant of the liquid is
 - a) 1

b) 2

c) 3

- d)4
- 16. In the electric field of a point charge *q*, a certain point charges is carried from point *A* to *B*, *C*, *D* and *E* as shown in figure. The work done is

a) Least along the path AE

- b) Least along the path AC
- c) Zero along any one of the paths
- d) Least along AB
- 17. Charges 2q, -q and -q lie at the vertices of a triangle. The value of E and V at the centroid of equilateral triangle will be
 - a) $E \neq 0$ and $V \neq 0$
- b) E = 0 and V = 0
- c) $E \neq 0$ and V = 0
- d) E = 0 and $V \neq 0$
- 18. A charged body has an electric flux ϕ associated with it the body is now placed inside a metallic container. The electric flux ϕ_1 associated with the container will be
 - a) $\phi_1 = 0$
- b) $0 < \phi_1 < \phi$
- c) $\phi_1 = \phi$
- d) $\phi_1 > \phi$
- 19. A particle A has charge +q and particle B has charge +4q with each of them having the save mass m. when allowed to fall from rest through the same electrical potential difference, the ration of their steeds v_A/v_B will become

a) 2:1 b) 1:2 c) 1:4 d) 4:1

20. A sphere of radius 1 m encloses a charge of 5 μ C. Another charge of -5 μ C is placed inside the sphere. The net electric flux would be

a) Double b) Four times c) Zero d) None of these