Class : XIIth
Subject : PHYSICS
DPP No. : 8
Date :

Topic :-ELECTROSTATIC POTENTIAL AND CAPACITANCE

1. A hollow charged metal sphere has radius r. If the potential difference between its surface and a point at a distance $3 r$ from the centre is V, then electric field intensity at a distance $3 r$ is
a) $\frac{V}{2 r}$
b) $\frac{V}{3 r}$
c) $\frac{V}{6 r}$
d) $\frac{V}{4 r}$
2. Six identical capacitors are joined in parallel, charged to a potential difference of 10 V , separated and then connected in series, $i e$, the positive plate of one is connected to negative plate of other. Then potential difference between free plates is
a) 10 V
b) 30 V
c) 60 V
d) $\frac{10}{6} \mathrm{~V}$
3. The potential energy of system of two equal negative point charges of $2 \mu \mathrm{C}$ each held 1 m apart in air is ($k=9 \times 10^{9}$ SI unit)
a) 36 J
b) $3.6 \times 10^{-3} \mathrm{~J}$
c) 3.6 J
d) $3.6 \times 10^{-2} \mathrm{~J}$
4. The flux entering and leaving a closed surface are 5×10^{5} and 4×10^{5} MKS units respectively, then the charge inside the surface will be
a) $-8.86 \times 10^{-7} \mathrm{C}$
b) $8.85 \times 10^{-7} \mathrm{C}$
c) $8.85 \times 10^{7} \mathrm{C}$
d) $6.85 \times 10^{-7} \mathrm{C}$
5. A charge $(-q)$ and another charge $(+Q)$ are kept at two points A and B respectively. Keeping the charge $(+Q)$ fixed at B, the charge $(-q)$ at A is moved to another point C such that ABC forms an equilateral triangle of side l. The net work done in moving the charge ($-q$) is
a) $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{l}$
b) $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{l^{2}}$
c) $\frac{1}{4 \pi \varepsilon_{0}} Q q l$
d) Zero
6. Potential energy of two equal negative point charges $2 \mu \mathrm{C}$ each held 1 m apart in air is
a) 2 J
b) 2 eV
c) 4 J
d) 0.036 J
7. Work done in carrying a charge Q_{1} once round a circle of radius R with a charge Q_{2} at the centre Is
a) $\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R^{2}}$
b) Zero
c) $\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R}$
d) Infinite
8. The electric potential at a point (x, y) in the $x-y$ plane is given by $V=-K x y$
The electric field intensity at a distance r from the origin varies as
a) r^{2}
b) r
c) $2 r$
d) $2 r^{2}$
9. The work done in moving an alpha particle between two points having potential difference 25 V is
a) $8 \times 10^{-18} \mathrm{~J}$
b) $8 \times 10^{-19} \mathrm{~J}$
c) $8 \times 10^{-20} \mathrm{~J}$
d) $8 \times 10^{-16} \mathrm{~J}$
10. Two parallel large thin metal sheets have equal surface charge densities $\left(\sigma=26.4 \times 10^{-12}\right.$ Cm^{-2}) of opposite signs. The electric field between these sheets is
a) $1.5 \mathrm{NC}^{-1}$
b) $1.5 \times 10^{-10} \mathrm{NC}^{-1}$
c) $3 \mathrm{NC}^{-1}$
d) $3 \times 10^{-10} \mathrm{NC}^{-1}$
11. The electrostatic potential energy between proton and electron separated by distance $1 \AA$ is
a) 13.6 eV
b) 27.2 eV
c) 14.4 eV
d) 1.44 eV
12. Equivalent capacitance between A and B is

a) $14 \mu \mathrm{~F}$
b) $4 \mu \mathrm{~F}$
c) $6 \mu \mathrm{~F}$
d) $2 \mu \mathrm{~F}$
13. In a circuit shown in figure, the potential difference across the capacitor of 2 F is

a) 8 V
b) 4 V
c) 12
d) 6 V
14. A $10 \mu \mathrm{C}$ capacitor is charged to a potential difference of 50 V and is connected to another uncharged capacitor in parallel. Now the common potential difference becomes 20 V . The capacitance of second capacitor is
a) $15 \mu \mathrm{~F}$
b) $30 \mu \mathrm{~F}$
c) $20 \mu \mathrm{~F}$
d) $10 \mu \mathrm{~F}$
15. An air parallel plate capacitor has capacity C. The capacity and distance between plates are doubled when immersed in a liquid then dielectric constant of the liquid is
a) 1
b) 2
c) 3
d) 4
16. In the electric field of a point charge q, a certain point charges is carried from point A to B, C, D and E as shown in figure. The work done is

a) Least along the path $A E$
b) Least along the path $A C$
c) Zero along any one of the paths
d) Least along $A B$
17. Charges $2 q,-q$ and $-q$ lie at the vertices of a triangle. The value of E and V at the centroid of equilateral triangle will be
a) $\mathrm{E} \neq 0$ and $V \neq 0$
b) $\mathrm{E}=0$ and $\mathrm{V}=0$
c) $\mathrm{E} \neq 0$ and $V=0$
d) $\mathrm{E}=0$ and $\mathrm{V} \neq 0$
18. A charged body has an electric flux ϕ associated with it the body is now placed inside a metallic container. The electric flux ϕ_{1} associated with the container will be
a) $\phi_{1}=0$
b) $0<\phi_{1}<\phi$
c) $\phi_{1}=\phi$
d) $\phi_{1}>\phi$
19. A particle A has charge $+q$ and particle B has charge $+4 q$ with each of them having the save mass m. when allowed to fall from rest through the same electrical potential difference, the ration of their steeds v_{A} / v_{B} will become
a) $2: 1$
b) $1: 2$
c) $1: 4$
d) $4: 1$
20. A sphere of radius 1 m encloses a charge of $5 \mu \mathrm{C}$. Another charge of $-5 \mu \mathrm{C}$ is placed inside the sphere. The net electric flux would be
a) Double
b) Four times
c) Zero
d) None of these

