Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 8

Topic :- ELECTROSTATIC POTENTIAL AND CAPACITANCE

1
(c)

Here $V=\frac{q}{4 \pi \varepsilon_{0} \cdot r}-\frac{q}{4 \pi \varepsilon_{0}(3 r)}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 q}{3 r}$ and
$E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{(3 r)^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{9 r^{2}}$
On simplification, we get $\frac{E}{V}=\frac{1}{6 r}$ or $E=\frac{V}{6 r}$

2

4
(c)

If C is capacity of each condenser, then charge on each capacitor $=10 \mathrm{C}$
$(\because V=10 \mathrm{~V})$
When connected in series, potential difference between free plates $=\frac{\text { total charge }}{\text { total capacity }}$
$=\frac{10 \mathrm{C}}{C / 6}=60 \mathrm{~V}$
(a)

Net flux leaving the surface
$\phi=4 \times 10^{5}-5 \times 10^{5}=-10^{5}$ MKS units
\therefore charges must be negative
$q=\phi \varepsilon_{0}=-10^{5} \times 8.86 \times 10^{-12}$
$=-8.86 \times 10^{-7} \mathrm{C}$
(d)

Net work done $=$ final PE - initial PE
$=\frac{Q q}{4 \pi \varepsilon_{0} l}-\frac{Q q}{4 \pi \varepsilon_{0} l}=$ Zero.
6 (d)
PE $=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r}=\frac{9 \times 10^{9}\left(2 \times 10^{-6}\right)^{2}}{1}=0.036 \mathrm{~J}$
(b)

Since electrical potential at any point of circle of radius R due to charge Q_{2} at its centre is same $V=\frac{Q_{2}}{4 \pi \varepsilon_{0} R}$, hence work done in carrying a charge Q_{1} round the circle is zero.
(b)

Co-ordinates of the point are (x, y)
\therefore Distance of point from origin,
$r=\sqrt{x^{2}+y^{2}}, V=-k x y$
$E_{x}=-\frac{d V}{d x}=-\frac{d}{d x}(-k x y)=k y$
$E_{y}=-\frac{d V}{d y}=(-k x y)=k x$
$\therefore E=\sqrt{E_{x}^{2}+E_{y}^{2}}=k \sqrt{y^{2}+x^{2}}=k r$
$\therefore E \propto r$

9
(a)

Required work done,

$$
\begin{aligned}
& W=Q V \\
& =(2 e) \times 25 \\
& =50 e=50 \times 1.6 \times 10^{-19} \\
& =8 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

0 (c)
The situation is shown in the figure. Plate 1 has surface charge density σ and plate 2 has surface charge density- σ. The electric fields

at point P due to two charged plates add up, giving

$$
E=\frac{\sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}}
$$

Given ,

$$
\sigma=26.4 \times 10^{-12} \mathrm{Cm}^{-2}
$$

$$
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}
$$

Hence , $\quad E=\frac{26.4 \times 10^{-12}}{8.85 \times 10^{-12}} \approx 3 \mathrm{NC}^{-1}$
Note the direction of electric field is from the positive to the negative plate.
(c)
$U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}$
$\therefore U=\frac{9 \times 10^{9} \times\left(1.6 \times 10^{-19}\right)\left(-1.6 \times 10^{-19}\right)}{10^{-10}}$
$=-9 \times 10^{9} \times 1.6 \times 10^{-19} \times 10^{10} \mathrm{eV}$

$$
=-14.4 \mathrm{eV}
$$

(d)

The capacitors $2 \mu \mathrm{~F}$ and $2 \mu \mathrm{~F}$ of arm $A C D$ are in series. So, their equivalent capacitance is 1 $\mu \mathrm{F}$ which is in parallel with capacitor of $1 \mu \mathrm{~F}$ of arm $A D$.
So, equivalent capacitance now is $2 \mu \mathrm{~F}$.
This capacitance is now in series with $2 \mu \mathrm{~F}$ capacitance of arm $B D$ which equivalents to 1 $\mu \mathrm{F}$ is in parallel with $1 \mu \mathrm{~F}$ capacitance of arm $A B$.
So, final effective capacitance $=2 \mu \mathrm{~F}$.
(b)
$\therefore \frac{1}{C_{s}}=\frac{1}{2}+\frac{1}{1}=\frac{3}{2}$
$C_{S}=\frac{2}{3} \mathrm{~F}$
$Q=C_{s} V=\frac{2}{3} \times 12=8 \mathrm{C}$
$V_{1}=\frac{Q}{C_{1}}=\frac{8}{2}=4 \mathrm{~V}$
(a)
$q_{1}=10 \times 50=500 \mu \mathrm{C}, \mathrm{C}_{1}=10 \mu \mathrm{~F}, \mathrm{C}_{2}=?, \mathrm{q}_{2}=0$
As $\quad V=\frac{q_{1}+q_{2}}{C_{1}+C_{2}}$
$\therefore C_{1}+C_{2}=\frac{q_{1}+q_{2}}{V}=\frac{500+0}{20}=25 \mu \mathrm{~F}$
$C_{2}=25-C_{1}=25-10=15 \mu \mathrm{~F}$
(d)

The capacitance of parallel plate air capacitor
$C=\frac{\varepsilon_{0} A}{d}$
where A is the area of each plate and d is the distance between the plates. In a medium of dielectric constant K and with given condition
$C^{\prime}=\frac{K \varepsilon_{0} A^{\prime}}{d^{\prime}}$
Given, $A^{\prime}=A, d^{\prime}=2 d, C^{\prime}=2 C$
$\therefore 2 C=\frac{K \varepsilon_{0} A}{2 d}$

Equating Eqs. (i) and (ii), we get

$$
K=4
$$

20
(c)

For charge q placed at the centre of circle, the circular path is an equipotential surface and hence works done along all paths $A B$ or $A C$ or $A D$ or $A E$ is zero.
(c)

The potential due to charge q at a distance r is given by
$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$
Since, potential is a scalar quantity, it can be added to find the sum due to individual charges.
$\Sigma V=V_{A}+V_{B}+V_{C}$
$V_{A}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 q}{x}$
$V_{B}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{x}$
$V_{C}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{x}$
$\therefore \quad V=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{2 q}{x}-\frac{q}{x}-\frac{q}{x}\right)=0$
Electric field is a vector quantity, hence component along $O D$ is taken
$E=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{2 q}{x^{2}}+\frac{2 q}{x^{2}} \cos \theta\right) \neq 0$
(c)

Total electric flux, $\phi_{1}=\phi=\frac{1}{\varepsilon_{0}}$ (charge enclosed) and ie, charge of given body is body is constant.
(b)
$\frac{E_{A}}{E_{B}}=\frac{\frac{1}{2} m v_{A}^{2}}{\frac{1}{2} m v_{B}^{2}}=\frac{W_{A}}{W_{B}}=\frac{(q) V}{(4 q) V}$
$\frac{v_{A}}{v_{B}}=\frac{1}{2}$
(c)
$\phi_{E}=\frac{\sum q}{\varepsilon_{0}}=\frac{(+5-5) \times 10^{-6}}{\varepsilon_{0}}=$ zero

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	C	D	A	D	D	B	B	A	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	D	B	A	D	C	C	C	B	C		

