Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 7

Topic :- ELECTROSTATIC POTENTIAL AND CAPACITANCE

1
(b)
$\frac{1}{C_{s}}=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}=\frac{3+2+1}{12}=\frac{6}{12}=\frac{1}{2}$
$C_{s}=2 \mu \mathrm{~F}$
$C_{p}=4+6+12=22 \mu \mathrm{~F}$
$\frac{C_{s}}{C_{p}}=\frac{2}{22}=\frac{1}{11}$
2
(b)

For neutral point $\overrightarrow{\mathrm{E}}_{\mathrm{A}}+\overrightarrow{\mathrm{E}}_{\mathrm{B}}=\overrightarrow{0}$ or $\overrightarrow{\mathrm{E}}_{\mathrm{A}}=-\overrightarrow{\mathrm{E}}_{\mathrm{B}}$. It is possible, in present problem, only at a point somewhere on the left of $-Q$
3
(c)

If we take a charge from one point to another inside a charged spherical shell, then no work will be done. This means that inside a spherical charge the potential at all points is the same and its value is equal to that on the surface, that is

$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R}$ volt
Also outside the metallic sphere
$V=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r}$
$V \propto \frac{1}{r}$
(c)

In an equilateral triangle distance of centroid from all the vertices is same (sayr).
$\therefore V=V_{1}+V_{2}+V_{3}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{2 q}{r}-\frac{q}{r}-\frac{q}{r}\right]=0$

But $\vec{E}_{A}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 q}{1}$ along $A O, \vec{E}_{B}=\frac{1}{4 \pi \varepsilon_{0} r^{2}}$ along $O B$ and
$\vec{E}_{c}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{} r^{2}$ along $O C$.obviously $\vec{E}_{B}+\vec{E}_{B}$ Will also be in the direction of $A O$ extended and hence \vec{E}_{A} and $\left(\vec{E}_{B}+\vec{E}_{C}\right)$ being in same direction will not give zero resultant.
(d)

The arrangement can be redrawn as shown in the adjoining figure.
$C_{13}=C_{1}+C_{3}=9+9=18 \mu \mathrm{~F}$
$C_{2-13}=\frac{C_{2} \times C_{13}}{C_{2}+C_{13}}=\frac{9 \mu \mathrm{~F} \times 18 \mu \mathrm{~F}}{(9+18) \mu \mathrm{F}}=6 \mu \mathrm{~F}$
$\therefore C=C_{2-13}+C_{4}=6 \mu \mathrm{~F} \times 9 \mu \mathrm{~F}=15 \mu \mathrm{~F}$.

(b)

The circuit is given as

Let q_{1} and q_{2} be the charge after switch S has been closed.
Then, $\quad V=\frac{q_{1}}{6 C}=\frac{q_{2}}{3 C}$

$\Rightarrow \quad \frac{q_{1}}{2}=q_{2}$
$\Rightarrow \quad q_{1}=2 q_{2}$
But we know that, charge is conserved

$$
\begin{array}{ll}
& q_{1}+q_{2}=3 q+6 q \\
& \text { or } \tag{ii}\\
q_{1}+q_{2} & =9 q
\end{array}
$$

On putting the value of q_{1} Eq. (ii)

$$
\begin{array}{rlrl}
& 2 q_{2}+q_{2} & =9 q \\
\Rightarrow \quad 3 q_{2} & =9 q \\
q_{2} & =3 q
\end{array}
$$

Now, from Eq. (i)

$$
\begin{array}{ll}
& q_{1}=2 \times 3 q \\
\Rightarrow & q_{1}=6 q \\
\text { Hence, } & q_{1}=6 q, q_{2}=3 q
\end{array}
$$

(b)
$C_{1}=\frac{K_{1} \varepsilon_{0} A}{d / 2}=\frac{2 K_{1} \varepsilon_{0} A}{d}$
$C_{2}=\frac{2 K_{2} \varepsilon_{0} A}{d}$
$\frac{1}{C_{s}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}=\frac{d}{2 K_{1} \varepsilon_{0} A}+\frac{d}{2 K_{2} \varepsilon_{0} A}$
$=\frac{d}{2 \varepsilon_{0} A}\left(\frac{K_{1}+K_{2}}{K_{1} K_{2}}\right)$
$C_{s}=\frac{2 \varepsilon_{0} A}{d}\left(\frac{K_{1} K_{2}}{K_{1}+K_{2}}\right)$
(c) conductor.
(a)

Electric potential inside a conductor is constant and it is equal to that on the surface of

Potential energy of the system

$$
\begin{aligned}
& U=\frac{K Q q}{l}+\frac{K q^{2}}{l}+\frac{K q Q}{l}=0 \\
& \Rightarrow \frac{K q}{l}(Q+q+Q)=0 \\
& \Rightarrow \quad Q=-\frac{q}{2}
\end{aligned}
$$

(b)

Potential energy of charges q_{1} and q_{2}, r distance apart

$$
U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}
$$

For $r=0.1 \mathrm{~m}$,

$$
\begin{aligned}
U_{1} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{12 \times 10^{-6} \times 5 \times 10^{-6}}{0.1} \\
& =\frac{9 \times 10^{9} \times 60 \times 10^{-12}}{0.1}=5.4 \mathrm{~J}
\end{aligned}
$$

For $r=0.06 \mathrm{~m}$,

$$
U_{2}=\frac{9 \times 10^{9} \times 60 \times 10^{-12}}{0.06}=9 \mathrm{~J}
$$

$\therefore \quad$ Work done $=(9-5.4) \mathrm{J}=3.6 \mathrm{~J}$
(d)

Loss of energy $\left.=\frac{1}{2\left(C_{1} C_{2}\right.}\left(V_{2}\right)-V_{2}\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \frac{5 \times 10^{-6} \times 5 \times 10^{-6}(2000-1000)^{2}}{(5+5) \times 10^{-6}} \\
& =\frac{5 \times 5}{2 \times 10}=1.25 \mathrm{~J}
\end{aligned}
$$

(c)

In steady state no current flows through the capacitor segment. The steady current in remaining loop $I=\frac{2 V-V}{2 R+R}=\frac{V}{3 R}$ (anti-clockwise). Now applying Kirchhoff's second law to loop containing $2 V, 2 R, C$ and V, we have $V_{c}=2 V-1.2 V-\frac{V}{3 R} \cdot 2 R-V=\frac{V}{3}$
(c)
$E \propto \frac{1}{r}$, where r is the distance from the axis.

(b)

Here, $C_{s}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=3 \mu \mathrm{~F}$
And $C_{p}=C_{1}+C_{2}=16 \mu \mathrm{~F}$
Solve to get, $C_{1}=4 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=12 \mu \mathrm{~F}$
(c)

When charges are placed at vertices of an equilateral triangle of side 1 m , then potential energy of combination is

$$
\begin{aligned}
& U_{1}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{1 \times 2 \times 10^{-12}}{(1)}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 \times 3 \times 10^{-12}}{(1)} \\
& +\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{3 \times 1 \times 10^{-12}}{(1)} \\
& =11 \times \frac{1}{4 \pi \varepsilon_{0}} \times 10^{-12} \mathrm{~J}
\end{aligned}
$$

When charges are placed at vertices of an equilateral triangle of side 0.5 m , then potential energy of combination is

$U_{1}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{1 \times 2 \times 10^{-12}}{(0.5)}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 \times 3 \times 10^{-12}}{(0.5)}$
$+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{3 \times 1 \times 10^{-12}}{(0.5)}$
$=22 \times \frac{1}{4 \pi \varepsilon_{0}} \times 10^{-12} \mathrm{~J}$
\therefore Work done $=\Delta U=U_{2}-U_{1}$
$=22 \times \frac{1}{4 \pi \varepsilon_{0}} \times 10^{-12}-11 \times \frac{1}{4 \pi \varepsilon_{0}} \times 10^{-12}$
$=11 \times \frac{1}{4 \pi \varepsilon_{0}} \times 10^{-12}$

$$
\begin{aligned}
& =11 \times 9 \times 10^{9} \times 10^{-12}=99 \times 10^{-3} \\
& =0.099 \mathrm{~J} \approx 0.01 \mathrm{~J}
\end{aligned}
$$

(c)

As work is done by the field, KE of the body increase by
$\mathrm{KE}=W=E=q\left(V_{A}-V_{B}\right)$
$=10^{-8}(600-0)=6 \times 10^{-6} \mathrm{~J}$
(a)

The $10 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ capacitors are connected in parallel, hence resultant capacitance is $C^{\prime}=10 \mu \mathrm{~F}+6 \mu \mathrm{~F}=16 \mu \mathrm{~F}$
This is connected in series with $4 \mu \mathrm{~F}$ capacitor, hence effective capacitance is

$$
\begin{aligned}
& \frac{1}{C^{\prime \prime}}=\frac{1}{16}+\frac{1}{4}=\frac{20}{16 \times 4} \\
\Rightarrow & C^{\prime \prime}=\frac{64}{20}=3.20 \mu \mathrm{~F}
\end{aligned}
$$

(d)

Time period of simple pendulum in air

when it is suspended between vertical plates of a charged parallel plate capacitor, then acceleration due to electric field,

$$
a=\frac{q E}{m}
$$

This acceleration is acting horizontally and acceleration due to gravity is acting vertically.
So, effective acceleration

$$
\mathrm{g}^{\prime}=\sqrt{\mathrm{g}^{2}+a^{2}}=\sqrt{\mathrm{g}^{2}+\left(\frac{q E}{m}\right)^{2}}
$$

Hence, $\quad T^{\prime}=2 \pi \frac{\sqrt{l}}{\sqrt{\mathrm{~g}^{2}+\left(\frac{q E}{m}\right)^{2}}}$
(b)

Equivalent capacitance between points B and C is

$$
C^{\prime}=\frac{10 \times 10}{10+10}+10=15 \mu \mathrm{~F}
$$

Now equivalent capacitance between points A and C is

$$
C^{\prime \prime}=\frac{5 \times 15}{15+5}=\frac{75}{20} \mu \mathrm{~F}
$$

Charge on capacitor of capacity $5 \mu \mathrm{~F}$ is

$$
Q=C V=\frac{75}{20} \times 2000=7500 \mu \mathrm{C}
$$

(Since, potential at the point C will be zero)
Now, potential difference across capacitor of $5 \mu \mathrm{~F}$ is

$$
V_{A}-V_{B}=\frac{Q}{5 \mu \mathrm{~F}}=\frac{7500 \mu \mathrm{C}}{5 \mu \mathrm{C}}=1500 \text { volt }
$$

As, $\quad V_{A}=2000 \mathrm{volt}$
Hence, $V_{B}=2000-1500=500$ volt.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	B	C	C	D	B	B	C	A	B		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	C	C	B	C	C	A	D	A	B		

