Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 6

Topic :- ELECTROSTATIC POTENTIAL AND CAPACITANCE

1

$$
\begin{aligned}
& V^{\prime} \\
&=1000=n \times 250 \\
& \Rightarrow \quad n=\frac{1000}{250}=4
\end{aligned}
$$

Also these four capacitor are connected in series then effective capacitance is

$$
\begin{array}{ll}
& \frac{1}{C^{\prime}}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{4}{8} \\
\Rightarrow & C^{\prime}=2 \mu \mathrm{~F} \\
\therefore & C^{\prime \prime}=16=2 \times m \\
\Rightarrow & m=\frac{16}{2}=8
\end{array}
$$

Hence $N=m \times n=8 \times 4=32$
(b)

Let m rows of n series capacitor be taken then minimum number of capacitors required is

(b)

The electric field intensity of a point in an electric field in a given direction is equal to the negative potential gradient in that direction, $i e$,
$E=-\frac{d V}{d x}$
The negative sign signifies that the potential decreases in the direction of electric field, $i e$, electric lines of force flow from higher potential region to lower potential region.

Since, $A B$ is perpendicular to field lines, so A and B are at same potential.

Hence, $V_{A}=V_{B}>V_{C}$
(c)

Original capacity, with air

$$
C=\frac{\varepsilon_{0} A}{d}
$$

When dielectric plate (medium) of thickness t is introduced between the plates, then capacity becomes

$$
C^{\prime}=\frac{\varepsilon_{0} A}{d^{\prime}-t\left(1-\frac{1}{k}\right)}
$$

but as given, $C^{\prime}=C$

$$
\begin{array}{rlrl}
& \therefore & \frac{\varepsilon_{0} A}{d} & =\frac{\varepsilon_{0} A}{d^{\prime}-t\left(1-\frac{1}{k}\right)} \\
& \text { or } & d & =d^{\prime}-t+\frac{t}{K} \\
& \text { or } & 8 & =d^{\prime}-4+\frac{4}{2} \\
\text { or } & 8 & =d^{\prime}-2 \\
& \text { or } & d^{\prime} & =10 \mathrm{~mm}
\end{array}
$$

(b)

Charge on each plate of each capacitor
$Q= \pm C V= \pm 25 \times 10^{-6} \times 200$
$= \pm 5 \times 10^{-3} \mathrm{C}$
(b)

Common potential $=\frac{C_{1} V_{0}+C_{2} \times 0}{C_{1}+C_{2}}=\frac{C_{2} V_{0}}{C_{1}+C_{2}}$
$U_{\text {before }}=\frac{1}{2} C_{1} V_{0}^{2}$
$U_{\text {after }}=\frac{1}{2} C_{1}\left[\frac{C_{1} V_{0}}{C_{1}+C_{2}}\right]^{2}+\frac{1}{2} C_{2}\left[\frac{C_{1} V_{0}}{C_{1}+C_{2}}\right]^{2}$
$=\frac{1}{2}\left[\frac{C_{1} V_{0}}{C_{1}+C_{2}}\right]^{2}\left(C_{1}+C_{2}\right)$
$\Rightarrow \quad \frac{U_{\text {before }}}{U_{\text {after }}}=\frac{C_{1}+C_{2}}{C_{1}}$
Here, $\quad C_{1}=C_{2}=C$

$$
\begin{array}{ll}
\therefore & \frac{U_{\text {before }}}{U_{\text {after }}}=\frac{2 C}{C} \\
\Rightarrow & U_{\text {after }}=\frac{U}{2}
\end{array}
$$

(a)

Electric field $E=\frac{V}{d}$
$\therefore \quad V \propto d$
As the distance between the plates of the capacitor increases potential difference also increases.
(d)

As $\frac{4}{3} \pi R^{3}=n \times \frac{4}{3} \pi r^{3} \quad \therefore R=n^{1 / 3} r$
New potential $V^{\prime}=\frac{n q}{4 \pi \varepsilon_{0} r}=n^{2 / 3} \mathrm{~V}$
(b)

Potential inside the sphere will be same as that on its surface
ie, $V=V_{\text {surface }}=\frac{q}{10}$ stat - volt
$\mathrm{V}_{\text {out }}=\frac{\mathrm{q}}{15}$ stat - volt
$\therefore \frac{\mathrm{V}_{\text {out }}}{\mathrm{V}}=\frac{2}{3}$
$\Rightarrow V_{\text {out }}=\frac{2}{3} \mathrm{~V}$
(a)

The given circuit is equivalent to a parallel combination of two identical capacitors.

Hence, equivalent capacitance between points A and B is

$$
C=\frac{\varepsilon_{0} A}{d}+\frac{\varepsilon_{0} A}{d}=\frac{2 \varepsilon_{0} A}{d}
$$

(c)

Energy given by the cell

$$
E=C V^{2}
$$

Here, $C=$ capacitance of capacitor $=\frac{A \varepsilon_{0}}{d}$
$V=$ potential difference across the plates $=E d$
Therefore, $\quad E=\left(\frac{A \varepsilon_{0}}{d}\right)(E d)^{2}=A \varepsilon_{0} E^{2} d$
(a)

When a positive charge is moved from one point to another in an electric of magnetic field, then under the influence of the field force acts on the particle and an external agent will have to do work against this force. But in the given case the charge moves under influence of no field, hence it does not experience any force therefore, no work is done.
$W_{A}=W_{B}=W_{C}=0$
(a)

The capacitor with air as the dielectric has capacitance

$$
C_{1}=\frac{\varepsilon_{0}}{d}\left(\frac{3 A}{4}\right)=\frac{3 \varepsilon_{0} A}{4 d}
$$

Similarly, the capacitor with K as the dielectric constant has capacitance

$$
C_{2}=\frac{\varepsilon_{0} K}{d}\left(\frac{A}{4}\right)=\frac{\varepsilon_{0} A K}{4 d}
$$

Since, C_{1} and C_{2} are in parallel

$$
\begin{aligned}
C_{\text {net }} & =C_{1}+C_{2} \\
& =\frac{3 \varepsilon_{0} A}{4 d}+\frac{\varepsilon_{0} A K}{4 d} \\
& =\frac{\varepsilon_{0} A}{d}\left[\frac{3}{4}+\frac{K}{4}\right] \\
& =\frac{C}{4}(K+3)
\end{aligned}
$$

(c)

On sharing of charges loss in electrical energy,
$\Delta U=\frac{C_{1} C_{2}}{2\left(C_{1}+C_{2}\right)}\left(V_{1}-V_{2}\right)$. In present case $C_{1}=C_{2}=C$
$\therefore \Delta U=\frac{C^{2}}{2(2 C)}\left(V_{1}-V_{2}\right)^{2}=\frac{1}{4} C\left(V_{1}-V_{2}\right)^{2}$
(b)

Energy of a charged capacitor,

$$
\begin{align*}
E & =\frac{1}{2} \frac{Q^{2}}{C} \\
C & =\frac{2 \pi \varepsilon_{0} L}{\log _{e}\left(\frac{b}{a}\right)} \\
E^{\prime} & =\frac{1}{22 \pi \varepsilon_{0}} \log _{e}\left(\frac{b}{a}\right) \tag{i}
\end{align*}
$$

For a cylindrical capacitor.
where $L=$ length of the cylinders
a and $b=$ radii of two concentric cylinders

$$
\begin{align*}
C^{\prime} & =\frac{2 \pi \varepsilon_{0}(2 L)}{\log _{e}\left(\frac{b}{a}\right)} \\
E^{\prime} & =\frac{1}{2} \frac{(2 Q)^{2}}{C^{\prime}} \\
& =\frac{1(2 Q)^{2}}{22 \pi \varepsilon_{0}(2 L)} \log _{e}\left(\frac{b}{a}\right) \tag{ii}
\end{align*}
$$

From Eqs. (i) and (ii), we get

$$
E^{\prime}=2 E
$$

(d)

$$
C=\frac{\varepsilon_{0} A}{\frac{d_{1}}{K_{1}}+\frac{d_{2}}{K_{2}}}
$$

$$
=\frac{\varepsilon_{0} A}{\frac{d}{2}\left(\frac{1}{1}+\frac{1}{2}\right)}=\frac{4 \varepsilon_{0} A}{3 d}
$$

(a)

Inside the hollow sphere, $V=$ constant $=$ potential on the surface of the sphere. Outside the sphere, $V \propto \frac{1}{r}$. Hence figure (a) represents the correct graph.
(d)

In a uniform electric field, field line should be straight but line of force cannot pass through the body of metal sphere and must end/start from the sphere normally. All these conditions are fulfilled only in plot (d).
(a)

Work is required to set up the four charge configuration
$q_{1}=+q, q_{2}=-q, q_{3}=+q$ and $q_{4}=-q$

$W=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{(+q)(-q)}{A B}+\frac{(-q)(+q)}{B C}+\frac{(+q)(-q)}{C D}+\frac{(-q)(+q)}{D A}+\frac{(+q)(+q)}{A C}+\frac{(-q)(-q)}{B D}\right]$
$W=\frac{1}{4 \pi \varepsilon_{0}}\left[-\frac{q^{2}}{a}-\frac{q^{2}}{a}-\frac{q^{2}}{a}-\frac{q^{2}}{a}+\frac{q^{2}}{a \sqrt{2}}+\frac{q^{2}}{a \sqrt{2}}\right]$
$W=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a}[-4+\sqrt{2}]=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a}[-4+1.414]$
$W=-0.21 \times \frac{q^{2}}{\varepsilon_{0} a} \quad$ (approx.)
(d)

In series arrangement potential difference is the sum of the individual potential difference of each capacitor.

$$
\left.\left.\begin{array}{rlrl}
i e, & & V & =V_{1}+V_{2}+V_{3}+\ldots \\
& \therefore & & 600
\end{array}\right)=x \times 200\right)
$$

So, there should be 3 capacitors in series to obtain the required potential difference.
The equivalent capacitance of the 3 capacitors in series is

$$
\begin{aligned}
& \frac{1}{C_{\text {eq }}}=\frac{1}{6}+\frac{1}{6}+\frac{1}{6} \\
& C_{\text {eq }}=2
\end{aligned}
$$

Now, we require $18 \mu \mathrm{~F}$ capacitance, for this we need 9 such combinations is parallel.
Hence, $9 \times 3=27$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	B	C	B	B	A	D	B	A	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	A	A	C	B	D	A	D	A	D		

