Class: XIIth
Date :

## Solutions

## Topic :- ELECTROSTATIC POTENTIAL AND CAPACITANCE

1

2

3
(a)

Potential gradient relates with electric field according to the relation, $E=-\frac{d V}{d r}$
$=-\frac{10}{20 \times 10^{-2}}=50 \mathrm{Vm}^{-1}$
(b)

Initially, the capacitance of capacitor


$$
\begin{array}{rlrl}
C & =\frac{\varepsilon_{0} A}{d} \\
\therefore \quad & \frac{\varepsilon_{0} A}{d} & =1 \mu \mathrm{~F} \tag{i}
\end{array}
$$

When it is filled with dielectric of dielectric constant $K_{1}$ and $K_{2}$ as shown, then there are two capacitors connected is parallel. So,

$$
C^{\prime}=\frac{K_{1} \varepsilon_{0}\left(\frac{A}{2}\right)}{d}+\frac{K_{2} \varepsilon_{0}\left(\frac{A}{2}\right)}{d}
$$

$$
C^{\prime}=\frac{4 \varepsilon_{0} A}{2 d}+\frac{6 \varepsilon_{0} A}{2 d}=\frac{2 \varepsilon_{0} A}{d}+\frac{3 \varepsilon_{0} A}{d}
$$

Using Eq. (i), we obtain
$C^{\prime}=2 \times 1+3 \times 1=5 \mu \mathrm{~F}$
(a)

Consider the charge distribution as shown. Considering the branch on upper side, we have


$$
\begin{aligned}
& \frac{q}{V_{x}-V_{A}}=4 \times 10^{-6} \\
& \frac{q}{V_{A}-V_{y}}=2 \times 10^{-6}
\end{aligned}
$$

Here, $\quad V_{x}=6$ volt, $V_{y}=0$

$$
\begin{align*}
\therefore & \frac{q}{6-V_{A}}=4 \times 10^{-6}  \tag{i}\\
& \frac{q}{V_{A}-0}=2 \times 10^{-6} \tag{ii}
\end{align*}
$$

From Eqs. (i) and (ii), we get

$$
\begin{aligned}
& & \frac{V_{A}}{6-V_{A}} & =2 \\
& \therefore & V_{A} & =4 \mathrm{volt}
\end{aligned}
$$

Similarly for the lower side branch

$$
\begin{gather*}
\frac{q^{\prime}}{6-V_{B}}=2 \times 10^{-6}  \tag{iii}\\
\frac{q^{\prime}}{V_{B}-0}=4 \times 10^{-6} \tag{iv}
\end{gather*}
$$

From Eqs. (iii) and (iv)
$\frac{V_{B}}{6-V_{B}}=\frac{1}{2}$
$\therefore V_{B}=2$ volt
$\therefore V_{A}-V_{B}=4-2=2$ volt
(a)

The system will be equivalent to series combination of two capacitors of half thickness ie. ,each of capacity 2 C
$\therefore \frac{1}{C_{s}}=\frac{1}{2 c}+\frac{1}{2 c}=\frac{1}{c}$ or $C_{s}=c$
$\therefore$ capacity remains the same
(b)

In parallel, potential is same, say $V$
$\frac{Q_{1}}{Q_{2}}=\frac{C_{1} V}{C_{2} V}=\frac{C_{1}}{C_{2}}$
(c)

The charge $q_{1}=C V_{0}$
or
$V_{0}=\frac{q_{1}}{C}$


Capacitors are in parallel, in parallel $V_{0}$ is same for all capacitors.
$\therefore$ For second capacitor $V_{0}=\frac{q_{2}}{2 C}$
From Eqs. (i) and (ii),

$$
\begin{equation*}
q_{2}=2 q_{1} \tag{iii}
\end{equation*}
$$

After disconnecting the battery, the region between the plates of the capacitor $C$ is completely filled with a material of dielectric constant ( $K=2$ ).
Then, $V_{1}=\frac{q_{1}}{C K}=\frac{q_{1}}{2 C}$
and $V_{1}=\frac{q_{2}}{2 C}=\frac{2 q_{1}}{2 C}=\frac{q_{1}}{C} \quad$ [from Eq. (iii)]


Charge will flow from 2 to 1 till
$\frac{q_{2}^{\prime}}{2 C}=\frac{q^{\prime}{ }_{1}}{K C}$
$\frac{q_{2}^{\prime}}{2 C}=\frac{q_{1}^{\prime}}{2 C}$
$i e, q_{1}^{\prime}=q_{2}^{\prime}$
Earlier potential $\quad V_{0}=\frac{q_{1}}{C}$
Now it is $V_{0}=\frac{q_{1}^{\prime}}{2 C}$
Now, $q_{1}+q_{2}=3 q_{1} \quad$ [from Eq.(iii)]
and $\quad q_{1}^{\prime}+q_{2}^{\prime}=3 q_{1}$
or $2 q_{1}^{\prime}=3 q_{1}$ or $q_{1}^{\prime}=\frac{3 q_{1}}{2}$
$\therefore$ Now potential $\frac{q_{1}^{\prime}}{2 C}=\frac{3 q_{1}}{4 C}$
$V=\frac{3 V_{0}}{4}$
$\left[\because q_{1}=V_{0} C\right]$
(c)

Electric flux may be due to the charges present inside the Gaussian surface, but for the purpose of calculation of electric field $E$ at any point we shall have to consider contribution of all the charges.
(d)

Frequency $n=50 \mathrm{~Hz}$
Time period $T=\frac{1}{50} \mathrm{~s}$
Time taken for voltage to change from its peak value to zero
$=\frac{T}{4}=\frac{1}{4 \times 50}=\frac{1}{200}=5 \times 10^{-3} \mathrm{~s}$
(d)
$E=\left(\frac{1}{2}\right) C V^{2}$
The energy stored in capacitor is lost in form of heat energy
$H=m s \Delta T$...(ii)
From Eqs. (i) and (ii), we have
$m s \Delta T=\left(\frac{1}{2}\right) C V^{2}$
$V=\sqrt{\frac{2 m s \Delta T}{C}}$
(b)

As the electrostatic force are conservative, work done is independent of path.
$W=\overrightarrow{\mathrm{F}} . \overrightarrow{\mathrm{ds}}=q E \hat{\mathrm{i}} .[(0-a) \hat{\dot{\mathrm{i}}}+(0-b) \hat{\mathrm{j}}]$
$=-q E a$
(d)
$E_{1}=\frac{1}{2} C_{1} V^{2}$
$=\frac{1}{2} \times 2 \times 10^{-6} \times 100^{2}=0.01 \mathrm{~J}$
$E_{1}=\frac{1}{2} C_{2} V^{2}$
$\frac{1}{2} \times 10 \times 10^{-6} \times(100)^{2}=0.05 \mathrm{~J}$
Energy change $=E_{2}-E_{2}$
$=0.05-0.01=0.04 \mathrm{~J}=4 \times 10^{-2} \mathrm{~J}$
(a)

Potential energy of electric dipole, $U=-\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{E}}=-p E \cos \theta$.

In Fig. (a), $\theta=\pi$ rad hence $U=-p E \cos \pi=+p E=$ maximum.
(a)
$C_{s}=\frac{10 \times 20}{10+20}=\frac{200}{30}=\frac{20}{3} \mu \mathrm{~F}$

$$
Q=C_{s} V
$$

$$
Q=\frac{20}{3} \mu \mathrm{~F} \times 200 \mathrm{~V}
$$

$$
Q=\frac{4000}{3} \mu \mathrm{C}
$$

Now, $\quad V=\frac{4000 \mu \mathrm{C}}{3 \times 30 \mu \mathrm{~F}}=\frac{4000}{90} \mathrm{~V}=\frac{400}{9} \mathrm{~V}$

$$
E=-\frac{d V}{d x}
$$

For I region, $\quad V_{1}=$ constant

$\therefore \frac{d V_{1}}{d x}=0$
$\therefore \quad E_{1}=0$
For II region,

$$
\begin{aligned}
& V_{2}=+\mathrm{ve}=+f(x) \\
& \therefore E_{2}=-\frac{d V_{2}}{d x}=-\mathrm{ve}
\end{aligned}
$$

For III region.
$V_{3}=$ constant
$\therefore \frac{d V_{3}}{d x}=0$
$\therefore \quad E_{3}=0$
For IV region, $V_{1}=-f(x)$
$\therefore \quad E_{4}=-\frac{d V_{4}}{d x}=+\mathrm{ve}$
From these values, we have
$E_{2}>E_{4}>E_{1}=E_{3}$

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |  |  |
| A. | A | B | A | A | D | B | C | C | D | D |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |  |  |
| A. | B | D | A | A | B | B | A | D | C | B |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |



