Class: XIIth
Subject : PHYSICS
Date:
DPP No. : 4

Topic :-ELECTROSTATIC POTENTIAL AND CAPACITANCE

1. If the potential of a capacitor having capacity $6 \mu \mathrm{~F}$ is increased from 10 V to 20 V , then increase in its energy is
a) $12 \times 10^{-6} \mathrm{~J}$
b) $9 \times 10^{-4} \mathrm{~J}$
c) $4.5 \times 10^{-6} \mathrm{~J}$
d) $2.25 \times 10^{-6} \mathrm{~J}$
2. The total energy stored in the condenser system shown in the figure will be

a) $2 \mu \mathrm{~J}$
b) $4 \mu \mathrm{~J}$
c) 8μ
d) $16 \mu \mathrm{~J}$
3. Two free protons are separated by a distance of $1 \AA$. If one proton is kept at least and the other is released, the kinetic energy of second proton when at infinite sparation is
a) $23.0 \times 10^{-19} \mathrm{~J}$
b) $11.5 \times 10^{-19} \mathrm{~J}$
c) $2.3 \times 10^{-19} \mathrm{~J}$
d) Zero
4. The work done in bringing a unit positive charge from infinity distance to a point at distance X from a positive charge Q is W. Then, the potential фat the point is
a) $\frac{W Q}{X}$
b) W
c) $\frac{W}{Q}$
d) $W Q$
5. An electric field is given by $\vec{E}=(y \hat{\mathrm{i}}+x \hat{\mathrm{j}}) \mathrm{m} \mathrm{NC}^{-1}$. The work done in moving a 1 C charge from \vec{r}_{A} $=(2 \hat{\dot{i}}+2 \hat{\mathrm{j}}) \mathrm{m}$ to $\vec{r}_{\mathrm{B}}=(4 \hat{\dot{\mathrm{i}}}+2 \hat{\mathrm{j}}) \mathrm{m}$ is
a) +8 J
b) +4 J
c) Zero
d) -4 J
6. The equivalent capacity between points A and B in figure will be, while capacitance of each capacitor is $3 \mu \mathrm{~F}$.

a) $2 \mu \mathrm{~F}$
b) $4 \mu \mathrm{~F}$
c) $7 \mu \mathrm{~F}$
d) $9 \mu \mathrm{~F}$
7. 27 identical drops of mercury are charged simultaneously to the same potential of 10 V each. Assuming drops to be spherical, if all the charged drops are made to combine to form one large drop, then the potential of larger drop would be
a) 45 V
b) 135
c) 270 V
d) 90 V
8. A soap bubble is charged to a potential of 16 V . Its radius is, then doubled. The potential of the bubble now will be
a) 16 V
b) 8 V
c) 4 V
d) 2 V
9. A $10 \mu \mathrm{~F}$ capacitor is charges to 500 V and its plates are joined together through a resistance of 10Ω. The heat produced in the resistance is
a) 500 J
b) 125 J
c) 250 J
d) 1.25 J
10. Work done in carrying a charge Q^{\prime} once round the circle of radius r with a charge Q at the centre is
a) $\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r}$
b) $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q Q^{\prime}}{r}$
c) Zero
d) $\frac{2 Q^{\prime}}{2 r}$
11. An automobile spring extends 0.2 m for 5000 N load. The ratio of potential energy stored in this spring when it has been compressed by 0.2 m to the potential energy stored in a $10 \mu \mathrm{~F}$ capacitor at a potential difference of 10000 V will be
a) $1 / 4$
b) 1
c) $1 / 2$
d) 2
12. A parallel plate capacitor of capacitance 100 pF is to be constructed by using paper sheets of 1 mm thickness as dielectric. If the dielectric constant of paper is 4 , the number of circular metal foils of diameter 2 cm each required for the purpose is
a) 40
b) 20
c) 30
d) 10
13. Two capacitor of capacity $6 \mu \mathrm{~F}$ and $12 \mu \mathrm{~F}$ in series are connected by potential of 150 V . the potential of capacitor of capacity $12 \mu \mathrm{~F}$ will be
a) 25 V
b) 50 V
c) 100 V
d) 150 V
14. A parallel plate capacitor or capacity C_{0} is charged to a potential V_{0}.
I. The energy stored in the capacitor when the battery is disconnected and the plate separation is doubled is E_{1}.
II. The energy stored in the capacitor when the charging battery is kept connected and the separation between the capacitor plates is doubled is E_{2}.Then $\frac{E_{1}}{E_{2}}$ value is
a) $\frac{4}{1}$
b) $\frac{3}{2}$
c) 2
d) $\frac{1}{2}$
15. The potential at a point P which is forming a corner of a square of side 93 mm with charges, Q_{1} $=33 \mathrm{nC}, Q_{2}=-51 \mathrm{nC}, Q_{3}=47 \mathrm{nC}$ located at the other three corners is nearly
a) 16 kV
b) 4 kV
c) 400 V
d) 160 V
16. If the plates of a parallel plate capacitor are not equal in area, then quantity of charge
a) On the plates will be same but nature of charge will differ
b) On the plates as well as nature of charge will be different
c) On the plates will be different but nature of charge will be same
d) As well as nature of charge will be same
17. Two capacitors of capacitance $2 \mu \mathrm{~F}$ and $4 \mu \mathrm{~F}$ respectively are connected in series. The combination is connected across a potential difference of 10 V . The ratio of energies stored by capacitors will be
a) $1: \sqrt{2}$
b) $2: 1$
c) $1: 4$
d) $4: 1$
18. A $20 \mu \mathrm{~F}$ capacitor is connected to 45 V battery through a circuit whose resistance is 2000Ω. What is the final charge on the capacitor?
a) $9 \times 10^{-4} \mathrm{C}$
b) $9.154 \times 10^{-4} \mathrm{C}$
c) $9.8 \times 10^{-4} \mathrm{C}$
d) None of these
19. The equivalent capacitance between points A and B for the combination of capacitors shown in figure, where all capacitances are in microfarad is

a) $6.0 \mu \mathrm{~F}$
b) $4.0 \mu \mathrm{~F}$
c) $2.0 \mu \mathrm{~F}$
d) $3.0 \mu \mathrm{~F}$
20. An air filled parallel plate capacitor has a capacity of 2 pF . The separation of the plates is doubled and the interspace between the plates is filled with wax. If the capacity is increased to 6 pF , the dielectric constant of wax is
a) 2
b) 3
c) 4
d) 6
