Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 4

Topic :- ELECTROSTATIC POTENTIAL AND CAPACITANCE

1
(b)

Energy of second proton $=$ PE of the system

$$
\begin{aligned}
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r} \\
& =9 \times 10^{9} \times \frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{1 \times 10^{-10}} \\
& =23.0 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

(c)

Potential at a point in a field is defined as the amount of work done in bringing a unit
positive test charge, from infinity to that point along any arbitrary path, i.e.,
$V=\frac{W}{q_{0}}$
$\therefore \quad V=\phi=\frac{W}{Q} \quad(\because X \ll \infty)$
(c)

Work done $=F s \cos \theta=F(2 \pi r) \cos 90^{\circ}=0$.
(d)

Positive plate of all the three condensers is connected to one point (A) and negative plate of all the three condensers is connected to point $(B) i e$, they are joined in parallel.
$C_{p}=3+3+3=9 \mu \mathrm{~F}$
(d)

Radius of big drop, $R=3 r$
$\left[\because \frac{4}{3} \pi R^{3}=27 \times \frac{4}{3} \pi r^{3}\right]$
$V=\frac{27 q}{4 \pi \varepsilon_{0} R}=\frac{27 q}{4 \pi \varepsilon_{0}(3 r)}$
$=9\left(\frac{q}{4 \pi \varepsilon_{0} r}\right)=9 \times 10=90 \mathrm{~V}$
(b)

Potential on bubble,
$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$
$\therefore \frac{V_{1}}{V_{2}}=\frac{r_{2}}{r_{1}}$
$\Rightarrow \frac{16}{V_{2}}=\frac{2}{1} \Rightarrow V_{2}=8 \mathrm{~V}$
(d)

Heat produced $=$ energy stored in capacitor
$\frac{1}{2} C V^{2}=\frac{1}{2}\left(10 \times 10^{-6}\right)(500)^{2}$
$=1.25 \mathrm{~J}$
(c)

Work done is zero because all the points on the circular path are at same potential.
(b)

When a force of F Newton is applied the potential energy is given by

$$
U=\frac{1}{2} F x
$$

Energy stored by capacitor is $\frac{1}{2} C V^{2}$
\therefore Ratio is $\frac{\frac{1}{2} F x}{\frac{1}{2} C V^{2}}=\frac{5000 \times 0.2}{10 \times 10^{-6} \times\left(10^{4}\right)^{2}}=1$
(d)

The arrangement of n metal plates separated by dielectric acts as parallel combination of ($n-1$) capacitors.
Therefore, $\quad C=\frac{(n-1) K \varepsilon_{0} A}{d}$
Here, $\quad C=100 \mathrm{pF}$

$$
=100 \times 10^{-12} \mathrm{~F}
$$

$$
K=4, \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}
$$

$$
A=\pi r^{2}=3.14 \times\left(1 \times 10^{-2}\right)^{2}
$$

$$
d=1 \mathrm{~mm}=1 \times 10^{-3}
$$

$\therefore \quad 100 \times 10^{-12}=$ $(n-1) \times 4 \times\left(8.85 \times 10^{-12}\right) \times 3.14$
$\frac{\times\left(1 \times 10^{-2}\right)^{2}}{1 \times 10^{-3}}$
or $\quad n=\frac{1111.156}{111.156}=9.99 \approx 10$
(b)

Given, $C_{1}=6 \mu \mathrm{~F}, C_{2}=12 \mu \mathrm{~F}, V=150 \mathrm{volt}$.
Total capacity, $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}=\frac{1}{6}+\frac{1}{12}$

$$
=\frac{2+1}{12} \frac{1}{C}=\frac{3}{12} C=4 \mu \mathrm{~F}
$$

Potential of $12 \mu \mathrm{~F}$ capacitor

$$
\begin{aligned}
V & =\frac{q}{C} \\
V & =\frac{4 \times 150}{12} \\
V & =50 \text { volt }
\end{aligned}
$$

(a)

Capacitance of parallel plate capacitor

$$
C_{0}=\frac{\varepsilon_{0} A}{d}
$$

Where $A=$ area of the plates,
$d=$ separation between the plates,

Charge stored in the capacitor

$$
Q=C_{0} V_{0}
$$

When battery is disconnected, then charge remains same.
So, energy $E_{1}=\frac{1}{2} \frac{Q^{2}}{C}$
$C=$ capacitance when plate separation is doubled.
So, $\quad C_{1}=\frac{C_{0}}{2}$

$$
E_{1}=\frac{1}{2} \frac{Q^{2}}{C_{0} / 2}=\frac{Q^{2}}{C_{0}}=\frac{C_{0}^{2} V_{0}^{2}}{C_{0}}=C_{0} V_{0}^{2}
$$

When battery is connected, then
Energy $\quad E_{2}=\frac{1}{2} C V_{0}^{2}$
where $\quad E_{2}=\frac{1 C_{0}}{2} V_{0}^{2}=\frac{1}{4}\left(C_{0} V_{0}^{2}\right)$

$$
\therefore \quad \frac{E_{1}}{E_{2}}=\frac{C_{0} V_{0}^{2}}{\frac{1}{4} C_{0} V_{0}^{2}}=\frac{1}{4}
$$

$$
E_{1}: E_{2}=4: 1
$$

(b)
$V=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q_{1}}{r_{1}}+\frac{Q_{2}}{r_{2}}+\frac{Q_{3}}{r_{3}}\right)$
$=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{33 \times 10^{-9}}{93 \times 10^{-3}}-\frac{51 \times 10^{-9}}{\sqrt{2} \times 93 \times 10^{-3}}+\frac{47 \times 10^{-9}}{93 \times 10^{-3}}\right)$
$=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{10^{-9}}{93 \times 10^{-3}}\left(33-\frac{51}{\sqrt{2}}+47\right)$
$\approx 4 \times 1000 \mathrm{~V}=4 \mathrm{kV}$
(a)

If the plates of a parallel plate capacitor are not equal in area, then quantity of charge on the plates will be same but nature of charge will differ.
(b)

Given, $C=2 \mu \mathrm{~F}, C_{2}=4 \mu \mathrm{~F}$, and $V=10 \mathrm{volt}$
Capacitors are connected in series
$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$
$\therefore C=\frac{4 \times 2}{4+2}=\frac{4}{3}$
The charge of combination
$q=C V=\frac{4}{3} \times 10=\frac{40}{3}$
The energy of $2 \mu \mathrm{~F}$ capacitor
$E=\frac{1}{2} \times \frac{q^{2}}{C_{1}}=\frac{1}{2} \times \frac{1600}{9 \times 2}=\frac{400}{9}$

The energy of $4 \mu \mathrm{~F}$ capacitor
$E_{2}=\frac{1}{2} \times \frac{q^{2}}{C_{2}}=\frac{1}{2} \times \frac{1600}{9 \times 4}=\frac{200}{9}$
The ratio of energies is
$\frac{E_{1}}{E_{2}}=\frac{\frac{400}{9}}{\frac{200}{9}}=\frac{2}{1}$
(a)

We know that in steady state the capacitor behaves like as an open circuit ie, capacitor will not pass the current.

So, the potential difference across the capacitor $=45 \mathrm{~V}$
Hence, the final charge on the capacitor is

$$
q=C V
$$

Here,

$$
C=20 \mu \mathrm{~F}, \quad V=45 \mathrm{~V}
$$

$\therefore \quad q=20 \times 10^{-6} \times 45$
or $\quad q=900 \times 10^{-6}$
or $\quad q=9 \times 10^{-4} \mathrm{C}$
(a)

In given figure C_{2} and C_{3} are in parallel,

$\therefore \quad C^{\prime}=C_{2}+C_{3}=4 \mu \mathrm{~F}$
As C^{\prime} and C_{1} are in series,

$$
\begin{aligned}
& \frac{1}{C^{\prime \prime}}=\frac{1}{C^{\prime}}+\frac{1}{C_{1}}=\frac{1}{4}+\frac{1}{4} \\
\Rightarrow \quad C^{\prime \prime} & =2 \mu \mathrm{~F}
\end{aligned}
$$

Similarly, C_{4} and C_{5} are in parallel

$$
C^{\prime \prime \prime}=6+2=8 \mu \mathrm{~F}
$$

$C^{\prime \prime \prime}$ and C_{6} are in series

$$
\begin{aligned}
& \frac{1}{C^{\prime \prime \prime}}=\frac{1}{C^{\prime \prime \prime}}+\frac{1}{C_{6}}=\frac{1}{8}+\frac{1}{8} \\
\Rightarrow \quad & C^{\prime \prime \prime}=4 \mu \mathrm{~F}
\end{aligned}
$$

Now, $C^{\prime \prime \prime}$ and $C^{\prime \prime}$ are in parallel.
$\therefore \quad C=4 \mu \mathrm{~F}+2 \mu \mathrm{~F}=6 \mu \mathrm{~F}$
(d)

Capacitance with air

$$
C=\frac{A \varepsilon_{0}}{d}
$$

When interspace between the plates is filled with wax, then

$$
\begin{array}{ll}
& C^{\prime}=\frac{K A \varepsilon_{0}}{2 d} \\
\text { or } & C^{\prime}=\left(\frac{A \varepsilon_{0}}{d}\right) \frac{K}{2} \\
\text { or } & C^{\prime}=C \frac{K}{2} \\
\therefore & \\
\therefore=2 \cdot \frac{K}{2} \Rightarrow K=6
\end{array}
$$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	C	B	C	C	D	D	B	D	C	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	D	B	A	B	A	B	A	A	D	

