Class : XIIth Date : Solutions

Subject : PHYSICS DPP No. : 4

Topic :- ELECTROSTATIC POTENTIAL AND CAPACITANCE

1

2

(b)

In capacitor, energy is stored in electric field between the plates. Increase in energy

 $\Delta U = U_f - U_i$ $= \frac{1}{2}CV_{f}^{2} - \frac{1}{2}CV_{i}^{2} = \frac{1}{2}C(V_{f}^{2} - V_{i}^{2})$ Given, $C = 6\mu F = 6 \times 10^{-6}$, $V_i = 10$ volt, $V_f = 20$ volt $\therefore \quad \Delta U = \frac{1}{2} \times 6 \times 10^{-6} [(20)^2 - (10)^2]$ $= 3 \times 10^{-6} \times 300 = 9 \times 10^{-4}$ (c) $6 \,\mu\text{F}$ and $3 \,\mu\text{F}$ capacitors are in series $\frac{1}{C_1} = \frac{1}{6} + \frac{1}{3}$ $C_1 = 2$ C_1 is parallel to 2 µF capacitor $C_{eq} = 2 + 2 = 4\mu F$:. Total energy, $U = \frac{1}{2}CV^2$ $=\frac{1}{2}\times 4\times (2)^2=8\mu J$ (b) Energy of second proton = PE of the system

$$= \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$$

= 9 × 10⁹ × $\frac{1.6 × 10^{-19} × 1.6 × 10^{-19}}{1 × 10^{-10}}$
= 23.0 × 10⁻¹⁹ J
(c)

4

3

Potential at a point in a field is defined as the amount of work done in bringing a unit

positive test charge, from infinity to that point along any arbitrary path, *i.e.*,

$$V = \frac{W}{q_0}$$

$$\therefore \quad V = \phi = \frac{W}{Q} \qquad (\because X \ll \infty)$$

5

(c)

(d)

(ժ)

(b)

Work done = $Fs\cos\theta = F(2\pi r)\cos 90^0 = 0$.

6

Positive plate of all the three condensers is connected to one point (*A*) and negative plate of all the three condensers is connected to point (*B*) *ie*, they are joined in parallel. $C_p = 3 + 3 + 3 = 9\mu$ F

7

Radius of big drop,
$$R = 3 r$$

 $\left[\because \frac{4}{3} \pi R^3 = 27 \times \frac{4}{3} \pi r^3 \right]$

 $V = \frac{27q}{4\pi\varepsilon_0 R} = \frac{27q}{4\pi\varepsilon_0(3r)}$ $= 9\left(\frac{q}{4\pi\varepsilon_0 r}\right) = 9 \times 10 = 90 \text{ V}$

8

Potential on bubble,

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

$$\therefore \frac{V_1}{V_2} = \frac{r_2}{r_1}$$

$$\Longrightarrow \frac{16}{V_2} = \frac{2}{1} \Longrightarrow V_2 = 8 V$$

9

Heat produced =energy stored in capacitor

$$\frac{1}{2}CV^2 = \frac{1}{2}(10 \times 10^{-6})(500)^2$$

= 1.25 J

(d)

10 **(c)**

Work done is zero because all the points on the circular path are at same potential.

11 **(b)**

When a force of F Newton is applied the potential energy is given by

$$U = \frac{1}{2}Fx$$

Energy stored by capacitor is $\frac{1}{2}CV^2$

$$\therefore \text{ Ratio is } \frac{\frac{1}{2}Fx}{\frac{1}{2}CV^2} = \frac{5000 \times 0.2}{10 \times 10^{-6} \times (10^4)^2} = 1$$

12

(d)

The arrangement of *n* metal plates separated by dielectric acts as parallel combination of (n-1) capacitors.

Therefore,
$$C = \frac{(n-1)K\varepsilon_0 A}{d}$$

Here, $C = 100 \text{ pF}$
 $= 100 \times 10^{-12} \text{F}$
 $K = 4, \varepsilon_0 = 8.85 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$
 $A = \pi r^2 = 3.14 \times (1 \times 10^{-2})^2$
 $d = 1 \text{ mm} = 1 \times 10^{-3}$
 $\therefore 100 \times 10^{-12} =$
 $(n-1) \times 4 \times (8.85 \times 10^{-12}) \times 3.14$
 $\times (1 \times 10^{-2})^2$
 1×10^{-3}
or $n = \frac{1111.156}{111.156} = 9.99 \approx 10$

13

(b)

Given, $C_1 = 6\mu F, C_2 = 12\mu F, V = 150$ volt. Total capacity, $\frac{1}{c} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{6} + \frac{1}{12}$ $= \frac{2+1}{12} \frac{1}{c} = \frac{3}{12} C = 4\mu F$ Potential of 12 μ F capacitor $V = \frac{q}{C}$ $V = \frac{4 \times 150}{12}$ V = 50 volt (a)

14

Capacitance of parallel plate capacitor

$$C_0 = \frac{\varepsilon_0 A}{d}$$

Where A = area of the plates,

d = separation between the plates,

Charge stored in the capacitor

 $Q = C_0 V_0$

When battery is disconnected, then charge remains same.

So, energy $E_1 = \frac{1Q^2}{2C}$

C = capacitance when plate separation is doubled.

So,
$$C_1 = \frac{C_0}{2}$$

 $E_1 = \frac{1}{2} \frac{Q^2}{C_0/2} = \frac{Q^2}{C_0} = \frac{C_0^2 V_0^2}{C_0} = C_0 V_0^2$

When battery is connected, then

Energy $E_2 = \frac{1}{2}CV_0^2$ where $E_2 = \frac{1}{2}C_0^2 = \frac{1}{4}(C_0V_0^2)$ $\therefore \qquad \frac{E_1}{E_2} = \frac{C_0V_0^2}{\frac{1}{4}C_0V_0^2} = \frac{1}{4}$ $E_1:E_2 = 4:1$

15

(b)

$$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q_1}{r_1} + \frac{Q_2}{r_2} + \frac{Q_3}{r_3} \right)$$

= $\frac{1}{4\pi\varepsilon_0} \left(\frac{33 \times 10^{-9}}{93 \times 10^{-3}} - \frac{51 \times 10^{-9}}{\sqrt{2} \times 93 \times 10^{-3}} + \frac{47 \times 10^{-9}}{93 \times 10^{-3}} \right)$
= $\frac{1}{4\pi\varepsilon_0} \times \frac{10^{-9}}{93 \times 10^{-3}} \left(33 - \frac{51}{\sqrt{2}} + 47 \right)$
 $\approx 4 \times 1000 \text{ V} = 4 \text{ kV}$

16 **(a)**

If the plates of a parallel plate capacitor are not equal in area, then quantity of charge on the plates will be same but nature of charge will differ.

17

(b) Given, $C = 2\mu$ F, $C_2 = 4\mu$ F, and V = 10volt Capacitors are connected in series $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$ $\therefore C = \frac{4 \times 2}{4 + 2} = \frac{4}{3}$ The charge of combination $q = CV = \frac{4}{3} \times 10 = \frac{40}{3}$ The energy of 2μ F capacitor $E = \frac{1}{2} \times \frac{q^2}{C_1} = \frac{1}{2} \times \frac{1600}{9 \times 2} = \frac{400}{9}$ The energy of 4μ F capacitor

$$E_2 = \frac{1}{2} \times \frac{q^2}{C_2} = \frac{1}{2} \times \frac{1600}{9 \times 4} = \frac{200}{9}$$

The ratio of energies is
$$\frac{E_1}{9} = \frac{\frac{400}{9}}{9} = \frac{2}{2}$$

$$\frac{E_1}{E_2} = \frac{9}{\frac{200}{9}} = \frac{2}{1}$$

(a)

18

We know that in steady state the capacitor behaves like as an open circuit *ie*, capacitor will not pass the current.

So, the potential difference across the capacitor = 45 V Hence , the final charge on the capacitor is

	q = CV	
Here ,	$C=20\mu\mathrm{F}, \qquad V=45$	5 V
. .	$q = 20 \times 10^{-6} \times 45$	
or	$q = 900 \times 10^{-6}$	
or	$q = 9 \times 10^{-4} \text{C}$	

19

(a)

In given figure C_2 and C_3 are in parallel,

As C' and C_1 are in series,

$$\frac{1}{C''} = \frac{1}{C'} + \frac{1}{C_1} = \frac{1}{4} + \frac{1}{4}$$

$$\Rightarrow \qquad C'' = 2 \ \mu F$$

Similarly, C_4 and C_5 are in parallel $C''' = 6 + 2 = 8 \,\mu\text{F}$ C''' and C_6 are in series $\frac{1}{C'''} = \frac{1}{C'''} + \frac{1}{C_6} = \frac{1}{8} + \frac{1}{8}$ $\Rightarrow C''' = 4 \,\mu\text{F}$ Now, C''' and C'' are in parallel. $\therefore C = 4\mu\text{F} + 2\mu\text{F} = 6\mu\text{F}$ (d)

20

Capacitance with air

$$C = \frac{A\varepsilon_0}{d}$$

When interspace between the plates is filled with wax, then

$$C' = \frac{KA\varepsilon_0}{2d}$$

or
$$C' = \left(\frac{A\varepsilon_0}{d}\right)\frac{K}{2}$$

or
$$C' = C\frac{K}{2}$$

$$\therefore \qquad 6 = 2 \cdot \frac{K}{2} \Rightarrow K = 6$$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	В	С	В	C	С	D	D	В	D	С		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	В	D	В	A	В	A	В	А	A	D		

