Class: XIIth
Date :

Solutions

Topic :- ELECTROSTATIC POTENTIAL AND CAPACITANCE

1

2

3
(b)

Capacitance of two capacitors each of area $\frac{A}{2}$, plate separation d but dielectric constants K_{1} and K_{2} respectively joined in parallel
$C_{1}=\frac{K_{1} \varepsilon_{0}\left(\frac{A}{2}\right)}{d / 2}+\frac{K_{2} \varepsilon_{0}\left(\frac{A}{2}\right)}{d / 2}=\frac{\left(K_{1}+K_{2}\right) \varepsilon_{0} A}{d}$
It is in series with a capacitor of plate area A, plate separation $d / 2$ and dielectric constant
$K_{3} i e, C_{2}=\frac{K_{3} \varepsilon_{0} A}{d / 2}$.
If resultant capacitance be taken as $C=\frac{K \varepsilon_{0} A}{d}$,
Then $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$
$\therefore \frac{d}{K \varepsilon_{0} A}=\frac{d}{\left(K_{1}+K_{2}\right) \varepsilon_{0} A}+\frac{d / 2}{K_{3} \varepsilon_{0} A}$
$\Rightarrow \frac{1}{K}=\frac{1}{K_{1}+K_{2}}+\frac{1}{2 K_{3}}$
(b)

For a charged sphere or shell of charge potential
$V_{s}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r}$.
Hence, charge on both the spheres will be equal.
3 (b)
Potential at the centre of hollow metallic sphere
$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R}$
(a)

Potential difference between two points in a electric fields is,
$V_{A}-V_{B}=\frac{W}{q_{0}}$
Where W is work done by moving charge q_{0} from point A to B.
So,
$V_{A}-V_{B}=\frac{2}{20}$
$\left(\right.$ Here $\left.W=2, q_{0}=20 C\right)=0.1 \mathrm{~V}$
(d)
$C_{p}=1+1+1=3 \mu \mathrm{~F}$
$\frac{1}{C_{s}}=\frac{1}{3}+\frac{1}{1}=\frac{4}{3}$
$\therefore C_{s}=\frac{3}{4} \mu \mathrm{~F}$
(a)
$\phi_{E}=\frac{q}{K \varepsilon_{0}}=\frac{0.5}{10 \times 8.85 \times 10^{12}}=5.65 \times 10^{9}$
(b)

Common potential of system

$$
\begin{aligned}
V & =\frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}} \\
40 & =\frac{10 \times 100+C_{2} \times 0}{10+C_{2}} \\
\text { or } & 40\left(10+C_{2}\right) \\
\Rightarrow & C_{2} \\
\Rightarrow & 1000 \\
& 15 \mu \mathrm{~F}
\end{aligned}
$$

(d)

Variation of different variables $(Q, C, V, E$ and U) of parallel plate capacitor when dielectric (K) is introduced when battery is removed is

$$
\begin{aligned}
& C^{\prime}=K C E^{\prime}=E / K \\
& Q^{\prime}=Q U^{\prime}=U / K \\
& V^{\prime}=V / K
\end{aligned}
$$

(b)

As electric field is along positive x-axis and $E=-\frac{d V}{d x^{\prime}}$, hence potential at A must be greater than that at B ie, $V_{A}>V_{B}$

10.
(c)

Energy given to conductor $=\frac{1}{2} C V^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 5 \times 10^{-6} \times(800)^{2} \\
& =1.6 \mathrm{~J}
\end{aligned}
$$

11. (c)

The dielectric is introduced such that, half of its area is occupied by It.

In the given case the two capacitors are in parallel.

$$
\begin{array}{lrl}
\therefore & C^{\prime} & =C_{1}+C_{2} \\
& C_{1} & =\frac{A \varepsilon_{0}}{2 d} \\
\text { And } & C_{2} & =\frac{K A \varepsilon_{0}}{2 d} \\
\text { Thus, } & C^{\prime} & =\frac{A \varepsilon_{0}}{2 d}+\frac{K A \varepsilon_{0}}{2 d} \\
& C^{\prime} & =\frac{C}{2}(1+K)
\end{array}
$$

12. (a)

The material suitable for use as dielectric must have high dielectric strength X and large dielectric constant K.
13.
(a)

The energy stored is given by
$E=\frac{1}{2} C V^{2}$
When capacitors are connected in parallel, resultant capacitance is
$C^{\prime}=C_{1}+C_{2}$
$=2 \mu \mathrm{~F}+2 \mu \mathrm{~F}=4 \mu \mathrm{~F}$
$V=100$ volt
$\therefore=\frac{1}{2} \times 4 \times 10^{-6} \times(100)^{2}$

$$
E=0.02 \mathrm{~J}
$$

14. (d)

With S_{1} and S_{3} closed, the capacitors C_{1} and C_{2} are in series arrangement. In series arrangement potential difference developed across capacitors are in the inverse radio of their capacities. Hence,
$\frac{V_{1}^{\prime}}{V_{2}^{\prime}}=\frac{C_{2}}{V_{1}}=\frac{3 p F}{3 p F}=\frac{3}{2}$ and
$V_{1}^{\prime}+V_{2}^{\prime}=V_{1}+V_{2}=30+20=50 \mathrm{~V}$
On simplification, we get $V_{1}^{\prime}=V_{1}=30 \mathrm{~V}$ and $V_{2}^{\prime}=V_{2}=20 \mathrm{~V}$
15. (b)
$E=\frac{\lambda}{2 \pi \varepsilon_{0} r}$
$\lambda=2 \pi \varepsilon_{0} r E$
$=\frac{1}{2 \times 9 \times 10^{9}} \times 2 \times 10^{-2} \times 9 \times 0^{4}$
$=10^{-7} \mathrm{Cm}^{-1}$
16. (d)

Let potential difference between the plates of the capacitors C_{1}, C_{2} and C_{3} be V_{1}, V_{2} and V_{3} and q be the charge.

$$
\mathrm{V}=11 \mathrm{volt}
$$

Then, $V=\frac{q}{C_{1}}, V_{2}=\frac{q}{C_{2}}, V_{3}=\frac{q}{C_{3}}$
The total potential difference $V=11$ volt

$$
\begin{array}{ll}
\therefore & V=V_{1}+V_{2}+V_{3} \\
\Rightarrow & V=\frac{q}{C_{1}}+\frac{q}{C_{2}}+\frac{q}{C_{3}}=11
\end{array}
$$

Given, $C_{1}=1 \mu \mathrm{~F}, C_{2}=2 \mu \mathrm{~F}, C_{3}=3 \mu \mathrm{~F}$

$$
\begin{array}{ll}
\therefore & 11=q\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}\right) \\
\Rightarrow & 11=\frac{11 q}{6} \\
\Rightarrow & q=6 \mu c \\
\therefore & V_{1}=\frac{q}{c_{1}}=\frac{6}{1}=6 \mathrm{~V}
\end{array}
$$

17. (b)

Initially, $F_{A B}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q \cdot q}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q^{2}}{r^{2}}$

Finally, force on

$$
\begin{aligned}
& F_{C}=F_{A B}-F_{C A}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\left(\frac{q}{2}\right)(q)}{\left(\frac{r}{2}\right)^{2}}-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\left(\frac{q}{2}\right)\left(\frac{q}{2}\right)}{\left(\frac{r}{2}\right)^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q^{2}}{r^{2}} \\
& \Rightarrow \quad F_{C}=F_{A B}
\end{aligned}
$$

18. (b)

The capacitance C of a capacitor of area A and distance between plates is d, then

$C=\frac{\varepsilon_{0} A}{d}$
When a dielectric slab of thickness t is placed between the plates, we have

$$
C^{\prime}=\frac{\varepsilon_{0} A}{d-t+\frac{t}{K}}
$$

Given, $C=20 \mu \mathrm{~F}=20 \times 10^{-6} \mathrm{~F}$,

$$
\begin{aligned}
d & =2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}, t=1 \mathrm{~mm} \\
& =1 \times 10^{-3} \mathrm{~m}, K=2
\end{aligned}
$$

$$
\therefore \quad \frac{C^{\prime}}{C}=\frac{d}{d-t\left(1-\frac{1}{K}\right)}
$$

$$
=\frac{2 \times 10^{-3}}{2 \times 10^{-3}-1 \times 10^{-3}\left(1-\frac{1}{2}\right)}=1.33
$$

$$
\Rightarrow \quad C^{\prime}=1.33 \times 20 \times 10^{-6}=26.6 \mu \mathrm{~F}
$$

19. (b)
$\overrightarrow{\mathrm{E}}_{1}=\frac{1}{4 \mu \pi \varepsilon_{0}} \cdot \frac{2 \vec{P}}{r^{3}}$ and
$\overrightarrow{\mathrm{E}}_{2}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\vec{P}}{\left(2 r^{3}\right)}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\vec{P}}{8 r^{3}}$
$\Rightarrow \overrightarrow{\mathrm{E}}_{2}=-\frac{\overrightarrow{\mathrm{E}}_{1}}{16}$
(Here negative sign means direction)
(c)

Let capacitance of each capacitor is C.

Then equivalent capacitance in series is

$$
\begin{array}{ll}
& \frac{1}{C^{\prime}}=\frac{1}{C}+\frac{1}{C}=\frac{2}{C} \\
\Rightarrow & C^{\prime}=\frac{C}{2} \\
\text { Charge } & Q \tag{i}
\end{array}
$$

When filled with dielectric

$$
\begin{array}{ll}
& C_{1}=4 C, C_{2}=C \\
& \frac{1}{C^{\prime}}=\frac{1}{4 C}+\frac{1}{C}=\frac{5}{4 C} \\
\Rightarrow \quad & C^{\prime}=\frac{4 C}{5}
\end{array}
$$

Since, charge is conserved

$$
\begin{equation*}
Q=C^{\prime} V^{\prime}=\frac{4 C}{5} V^{\prime} \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii), we get

$$
\begin{aligned}
\frac{C}{2} \times 15 & =\frac{4 C}{5} \times V^{\prime} \\
\Rightarrow \quad V^{\prime} & =\frac{15 \times 5}{4 \times 2}=9.4 \mathrm{~V} \\
& \approx 10 \mathrm{~V}
\end{aligned}
$$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	B	B	A	D	A	B	D	B	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	C	A	A	D	B	D	B	B	B	C			

