

Class : XIIth Date : Subject : PHYSICS DPP No. :10

d) None of these

Topic :-.ELECTROSTATIC POTENTIAL AND CAPACITANCE

1. If a point charge *q* is placed at a point inside a hollow conducting sphere, then which of the following electric lines of force pattern is correct?

- Two tree protons are separated by a distance of 1Å. If they are released, the kinetic energy of each proton when at infinite separation is a) 11.5 × 10⁻¹⁹ J
 b) 23 × 10⁻¹⁹ J
 c) 46 × 10⁻¹⁹ J
 d) 5.6 × 10⁻¹² J
- 3. When two conductors of charges and potentials C_1 , V_1 and C_2 , V_2 respectively are joined, the common potential will be

a)
$$\frac{C_1V_1 + C_2V_2}{V_1 + V_2}$$
 b) $\frac{C_1V_1^2 + C_2V_2^2}{V_1^2 + V_2^2}$ c) $C_1 + C_2$ d) $\frac{C_1V_1 + C_2V_2}{C_1 + C_2}$

4. The points resembling equal potentials are

a) P and Q b) S and Q c) S and R d) P and R 5. The electric potential *V* at any point *x*, *y*, *z* (all the metre) in space is given by $V = 4x^2$ volt. The

- electric field at the point (1m, 0, 2m) in Vm⁻¹ is a) $-8\hat{i}$ b) $+8\hat{i}$ c) $-16\hat{i}$ d) $16\hat{k}$
- 6. An air capacitor is charged with an amount of charge *q* and dipped into an oil tank. If the oil is pumped out , the electric field between the plates of capacitor will

a) Increase

b) Decrease

c) Remain the same d) Be

d) Become zero

7. A network of six identical capacitors, each of value*C*, is made as shown in the figure.

The equivalent capacitance between the points *A* and *B* is

a)
$$\frac{4C}{11}$$
 b) $\frac{3C}{4}$ c) $\frac{3C}{2}$ d) $3C$

- 8. In a region of space, the electric field is given by $\vec{E} = 8i + 4j + 3\hat{k}$. The electric flux through a surface of area of 100 units *x*-*y* plane is
- a) 800 units
 b) 300 units
 c) 400 units
 d) 1500 units
 9. Figure shows three spherical and equipotential surfaces *A*, *B* and *C* round a point charge *q*. The
 - potential difference $V_A V_B = V_B V_C$. If t_1 and t_2 be the distance between them. Then

 $t_1 > t_2$ b) $t_1 > t_2$ c) $t_1 < t_2$ ectric slab is inserted between the plates of an isolat

d) $t_1 \leq t_2$

- 10. A dielectric slab is inserted between the plates of an isolated charged capacitor. Which of the following quantities remain unchanged?
 - a) The charge on the capacitor b) The stored energy in the capacitor
 - c) The potential difference between the plates d) The electric field in the capacitor
- 11. Three capacitors of capacitance $C(\mu F)$ are connected in parallel to which a capacitor of capacitance *C* is connected in series. Effective capacitance is 3.75, then capacity of each capacitor is

a)
$$4 \,\mu F$$
 b) $5 \,\mu F$ c) $6 \,\mu F$ d) $8 \,\mu F$

12. Two identical parallel plate capacitors are placed in series and connected to a constant voltage source of *V* volt. If one of the capacitor is completely immersed in a liquid of dielectric constant *K*, then the potential difference between the plates of the other capacitor will change to

a)
$$\frac{K}{K+1}V$$
 b) $\frac{K+1}{K}$ c) $\frac{2K}{K+1}V$ d) $\frac{K+1}{2K}V$

- 13. Across each of two capacitors 1 μ F and 4 μ F, a potential difference of 10 V is applied. Then positive plate of one is connected to the negative plate of the other, and negative plate of one is connected to the positive plate of the other. After contact
 - a) Charge on each is zero b) Charge on each is same but non-zero
 - c) Charge on each is different but non-zero d) None of the above
- 14. On increasing the plate separation of a charged capacitor, the energy
 - a) Increases b) Decreases c) Remains unchanged d) Becomes zero
- 15. A charge q is fixed. Another charge Q is brought near it and rotated in a circle of radius r around it. Work done during rotation is

a) Zero b)
$$\frac{Qq}{4\pi\varepsilon_0 r}$$
 c) $\frac{Qq}{2\pi\varepsilon_0 r}$ d) None of these

16. The equivalent capacitance of the combination of three capacitors, each of capacitance *C* shown in figure between points *A* and *B* is

$$A = \begin{bmatrix} c_1 & c_3 \\ c_2 & \\ c_2 \end{bmatrix} B$$

a) $\frac{C}{2}$ b) $\frac{3C}{2}$ c) $\frac{1}{3C}$ d) 2C

17. A thin spherical conducting shell of radius *R* has a charge *q*. Another charge *Q* is placed at the centre of the shell. The electrostatic potential at a point *P* at a distance *R*/2 from the centre of the shell is

a)
$$\frac{2Q}{4\pi\varepsilon_0 R}$$
 b) $\frac{2Q}{4\pi\varepsilon_0 R} - \frac{2q}{4\pi\varepsilon_0 R}$ c) $\frac{2Q}{4\pi\varepsilon_0 R} + \frac{q}{4\pi\varepsilon_0 R}$ d) $\frac{(q+Q)}{4\pi\varepsilon_0} \frac{2}{R}$

- 18. In a charged capacitor the energy stored in
 a) The positive charges
 c) The field between the plates
 19. In a parallel plate capacitor, the capacity increases
- b) The negative charges d) None of the above
- 19. In a parallel plate capacitor , the capacity increases if
 - a) Area of the plate is decreased b
 - c) Area of the plate is increased

b) Distance between the plates increasesd) Dielectric constant decrease

- 20. A spherical drop of mercury having a potential of 2.5V is obtained as a result of merging 125 droplets. The potential of a constituent droplets would be
 - a) 1.0V b) 0.5V c) 0.2V d) 0.1V