Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 1

Topic :- ELECTROSTATIC POTENTIAL AND CAPACITANCE

1

2
(d)

If length of the foil is them

$$
\begin{array}{rlrl}
& C & =\frac{K \varepsilon_{0}(l \times b)}{d} \\
\Rightarrow 2 \times 10^{-6} & =\frac{2.5 \times 8.85 \times 10^{-12}\left(l \times 400 \times 10^{-3}\right)}{0.15 \times 10^{-3}} \\
\Rightarrow \quad l & l & =33.9 \mathrm{~m} .
\end{array}
$$

3 (c)
The capacitance of air capacitor

$$
\begin{equation*}
C_{0}=\frac{A \varepsilon_{0}}{d}=3 \mu \mathrm{~F} \tag{i}
\end{equation*}
$$

When a dielectric of permittivity ε_{r} and dielectric constant K is introduced between the plates of the capacitor, then its capacitance

$$
\begin{equation*}
C=\frac{K A \varepsilon_{0}}{d}=15 \mu \mathrm{~F} \tag{ii}
\end{equation*}
$$

Dividing Eq. (ii) by Eq. (i)

$$
\begin{array}{rlrl}
& & \frac{C}{C_{0}} & =\frac{K A \varepsilon_{0}}{d} \\
\frac{A \varepsilon_{0}}{d} & \frac{15}{3} \\
\therefore & & K & =5
\end{array}
$$

Permittivity of the medium

$$
\begin{aligned}
\varepsilon_{r} & =\varepsilon_{0} K \\
& =8.854 \times 10^{-12} \times 5 \\
& =44.27 \times 10^{-12} \\
& =0.44 \times 10^{-10} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}
\end{aligned}
$$

(a)
$\int \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\mathrm{NC}^{-1}\left(\mathrm{M}^{2}\right)$
$=(\mathrm{Nm}) \mathrm{C}^{-1}(\mathrm{~m})=\mathrm{JC}^{-1} \mathrm{~m}=\mathrm{V}-\mathrm{m}$
(c)

As battery is disconnected, total charge Q is shared equally by two capacitors. energy of each capacitor

$$
=\frac{(Q / 2)^{2}}{2 C}=\frac{1}{4} \frac{Q^{2}}{2 C}=\frac{1}{4} U
$$

(a)

Here , $t=2 \mathrm{~mm}, x=1.6 \mathrm{~mm}, K=$?
As potential difference remains the same, capacity must remain the same
$\therefore \quad x=t\left(1-\frac{1}{K}\right)$
$1.6=2\left(1-\frac{1}{K}\right)$, which gives $K=5$
(c)

On connecting, potential becomes equal $q \propto C \propto r$ and $\sigma=\frac{q}{A} \propto \frac{r}{r^{2}} \rightarrow \frac{1}{r}$
\therefore Surface charge density on 15 cm sphere will be greater than that on 20 cm sphere.
(a)

The potential due to charge q at distance r is given by
$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$
If W be the work done in moving the charge from A to B then the potential difference (V) is given by
$V_{A}-V_{B}=\frac{W}{q}$
Both work (W) and charge (q) are scalar quantities hence potential difference $\left(V_{A}-V_{B}\right)$ will also be a scalar quantity.

Here,
$V_{A}=V_{B}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{a / \sqrt{2}}$
Since, 2 is same for both,
$V_{A}-V_{B}=0$
$W=0$

9
(d)

The capacity of an isolated spherical conductor of radius R is $4 \pi \varepsilon_{0} R$
\therefore

$$
C \propto R
$$

(d)

Here, we have two capacitors I and II connected in parallel order.

So,

$$
\begin{aligned}
C & =C_{1}+C_{2} \\
& =\frac{\varepsilon_{0} A}{d}+\frac{\varepsilon_{0} A}{d}=\frac{2 \varepsilon_{0} A}{d}
\end{aligned}
$$

(c)

Inside a charged sphere, electric field intensity at all points is zero and electric potential is same at all the points.

Electrical potential,
$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R}$
Therefore, potential at the centre is equal to the potential at the surface.
(b)

Here, $r_{1}=10 \mathrm{~cm}, r_{2}=15 \mathrm{~cm}$,
$\mathrm{V}_{1}=150 \mathrm{~V}, \mathrm{~V}_{2}=100 \mathrm{~V}$
Common potential
$V=\frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}}=\frac{4 \pi \varepsilon_{0}\left(r_{1} V_{1}+r_{2} V_{2}\right)}{4 \pi \varepsilon_{0}\left(r_{1}+r_{2}\right)}$
$=120 \mathrm{~V}$
$q_{1}=C_{1} V=4 \pi \varepsilon_{0} r_{1} V=\frac{10^{-1}}{9 \times 10^{9}} \times 120 \mathrm{C}$
$=\frac{12}{9 \times 10^{9}} \times 3 \times 10^{9} \mathrm{esu}=4 \mathrm{esu}$
(b)

Potential at A due to charge at O

Potential at B due to charge at O
$V_{B}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\left(10^{-3}\right)}{O B}$
$=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\left(10^{-3}\right)}{2}$
So,
$V_{A}-V_{B}=0$
(a)

Here, $U_{1}=\frac{Q(-q)}{4 \pi \varepsilon_{0} r} ; U_{2}=\frac{Q(-q)}{4 \pi \varepsilon_{0}(r / 2)}$
$U_{1}-U_{2}=\frac{Q(-q)}{4 \pi \varepsilon_{0}}\left[\frac{1}{r}-\frac{2}{r}\right]$
$=\frac{Q q}{4 \pi \varepsilon_{0}}=9$
When negative charge travels first half of distance, $i e, r / 4$, potential energy of the system
$U_{3}=\frac{Q(-q)}{4 \pi \varepsilon_{0}(3 r / 4)}=-\frac{Q r}{4 \pi \varepsilon_{0} r} \times \frac{4}{3}$
\therefore work done $=U_{1}-U_{3}$
$=\frac{Q(-q)}{4 \pi \varepsilon_{0} r}+\frac{Q r}{4 \pi \varepsilon_{0} r} \times \frac{4}{3}$
$=\frac{Q q}{4 \pi \varepsilon_{0} r} \times \frac{1}{3}=\frac{9}{3}=3 \mathrm{~J}$
(a)

By using $W=\mathcal{Q}(\mathbf{E} . \Delta \mathbf{r})$

$$
\begin{aligned}
& \left.\Rightarrow \mathrm{W}=Q\left[e_{1} \hat{\boldsymbol{i}}+e_{2} \hat{\boldsymbol{j}}+e_{3} \hat{\boldsymbol{k}}\right) \cdot(a \hat{\boldsymbol{i}}+b \hat{\mathbf{j}})\right] \\
& =Q\left(e_{1} a+e_{2} b\right)
\end{aligned}
$$

(d)
$E=\sigma / \varepsilon_{0}$, The value of E does not depend upon radius of the sphere.
(b)

Here, $\mathrm{KE}=100 \mathrm{eV}=100 \times 1.6 \times 10^{-19} \mathrm{~J}$
This is lost when electron moves through a distance (d) towards the negative plate.
$\mathrm{KE}=$ work done $=F \times s \Rightarrow q E \times s=e\left(\frac{\sigma}{\varepsilon_{0}}\right) d=\left(\frac{(\mathrm{KE}) \varepsilon_{0}}{e \sigma}\right)$
$d=\frac{100 \times 1.6 \times 10^{-19} \times 8.86 \times 10^{-12} \mathrm{~J}}{1.6 \times 10^{-19} \times 2 \times 10^{-6}}=4.43 \times 10^{-4} \mathrm{~m}$
$=0.443 \mathrm{~mm}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	D	C	A	C	A	C	A	D	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	B	B	B	A	A	A	A	D	B		

