

Class : XIIth Date :

Solutions

Subject : PHYSICS DPP No. :9

Topic :- Electric charges and fields

1

(c)

$$\tau_{\text{max}} = pE = q(2l)E = 2 \times 10^{-6} \times 0.01 \times 5 \times 10^{5}$$

 $= 10 \times 10^{-3}N - m$

2

(a)

Following figures show the situations of charges fixed on the axis. An electron is placed to the left of these charges. The cases are as follows

Case I Let distance between +q and -4q = d

 \therefore distance between -e and +q = x

 \therefore distance between -e and -4q = (x + d)

Now, force between -e and +q

$$F_1 = -\frac{1}{4\pi\varepsilon_0 x^2} \qquad (\text{attractive})$$

Force between -e and -4q

$$F_2 = \frac{1}{4\pi\varepsilon_0 (x+d)^2}$$
 (repulsive)

Solving, we get

$$x = d$$

$$\therefore F_1 = -F_2$$

$$F_{\rm net} = 0$$

Hence no net force acts on the electron and so it will be in equilibrium.

Case II In this case force acting between *e* and -q

and force between -e and +4q

$$F_2 = -\frac{1}{4\pi\varepsilon_0(x+d)^2} \qquad \text{(attractive)}$$

Solving we get

 \leftarrow

$$x = d$$

 \therefore Net force on -e is zero

Case III Again force between -e and 4q

$$e +4q -q$$

$$x - x - d - d$$

Similarly, $F_1 = -\frac{1}{4\pi\varepsilon_0} \frac{4qe}{x^2}$ (attractive)

$$F_2 = -\frac{1}{4\pi\varepsilon_0} \frac{qe}{(x+d)^2}$$
 (repulsive)

 $F_1 = -F_2$ (numerically)

Since, electron is closer to +4q than -q, so $F_1 > F_2$

In this case electron will not remain at rest and starts moving towards the system.

Case IV In this case force between -e and -4q

$$F_1 = + \frac{1}{4\pi\varepsilon_0} \frac{4qe}{x^2}$$
 (repulsive)

Force between
$$-e$$
 and $+q$

$$F_2 = -\frac{1}{4\pi\varepsilon_0 (x+d)^2} \qquad (\text{attractive})$$

Since, electron is closer to -4q than +q, then $F_1 > F_2$.

Thus, electron will move away from the system. It means equilibrium stage cannot be obtained.

3

(a)

Electric flux is equal to the product of an area element and the perpendicular component of **E**. As the surface is lying in Y-Z plane

$$\therefore \mathbf{E}.d\mathbf{A} = \mathbf{\phi} = (5)(20)$$

= 100 unit.

5

(c)

(b)

The time required to fall through distance *d* is $d = \frac{1}{2} \left(\frac{qE}{m}\right) t^2 \text{ or } t = \sqrt{\frac{2dm}{qE}}$

Since $t^2 \propto m$, a proton takes more time

6

(b)
For electron
$$s = \frac{eE}{m_e} \times t_1^2$$
, For proton $s = \frac{eE}{m_p} \times t_2^2$
 $t_1^2 = m_r + t_2 = m_r + (m_r)^{1/2}$

$$\therefore \frac{t_2^2}{t_1^2} = \frac{m_p}{m_e} \Rightarrow \frac{t_2}{t_1} = \sqrt{\frac{m_p}{m_e}} = \left(\frac{m_p}{m_e}\right)^{1/2}$$

7

Two equal and opposite charges are placed at a distance d. Electric field at centre(B) due to +Qcharge

$$|-Q|_{2} \rightarrow |$$

$$+Q - Q$$

$$A - B - C$$

$$|-Q|_{2} \rightarrow |$$

$$(E_{1}) = \frac{1}{4\pi\varepsilon_{0}} \frac{Q}{\left(\frac{d}{2}\right)^{2}}$$

Similarly, electric field due to -Q charge

$$(E_2) = \frac{1}{4\pi\varepsilon_0} \frac{(Q)}{\left(\frac{d}{2}\right)^2}$$

Therefore, net electric field at point

 $E = E_1 + E_2$

(d)

(c)

(c)

$$=\frac{1}{4\pi\varepsilon_0}\frac{4\mathcal{Q}}{d^2}+\frac{1}{4\pi\varepsilon_0}\frac{4\mathcal{Q}}{d^2}=\frac{1}{4\pi\varepsilon_0}\frac{8\mathcal{Q}}{d^2}$$

8

Capacitance of the given assembly (R_1R_2)

$$C = 4\pi\varepsilon_0 \left(\frac{R_1 R_2}{R_2 - R_1}\right) \Rightarrow C \propto \frac{R_1 R_2}{(R_2 - R_1)}$$

9

(d)

$$V = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2} \Rightarrow 20 = \frac{10 \times 50 + C_2 \times 0}{10 + C_2}$$

$$\Rightarrow 200 + 20C_2 = 500 \Rightarrow C_2 = 15\mu F$$

10

According to graph we can say that potential difference across the capacitor C_1 is more than that across C_2 . Since charge Q is same *i.e.*, $Q = C_1V_1 = C_2V_2$

$$\Rightarrow \frac{C_1}{C_2} = \frac{V_2}{V_1} \Rightarrow C_1 < C_2 \quad [V_1 > V_2]$$

11

$$U = \frac{1}{2}CV^2$$

Now if *V* is constant, then *U* is greatest when C_{eq} is maximum. This is when all the three are in parallel

(a) $\frac{1}{C_{eq}} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \Rightarrow C_{eq} = 1 \ \mu F$ Total charge $Q = C_{eq}$. $V = 1 \times 24 = 24 \ \mu C$ So p.d. across 6 μF capacitor $=\frac{24}{6} = 4 \ volt$

12

(c)

$$E_{B} = E_{A} = E_{A}$$

$$= \frac{1}{a} = \frac{1}{a} = \frac{1}{a} = \frac{1}{a} = \frac{1}{a} = \frac{1}{a}$$
So, $E_{net} = \sqrt{E_{A}^{2} + E_{B}^{2} + 2E_{A}E_{B}\cos 60^{\circ}}$

$$= \frac{\sqrt{3}k.q}{a^{2}}$$

$$\Rightarrow E_{net} = \frac{\sqrt{3}q}{4\pi\epsilon_{0}a^{2}}$$
(c)

14

Electric lines of force never intersect the conductor. They are perpendicular and slightly curved near the surface of conductor

15 **(b)**

When a dielectric K is introduced in a parallel plate condenser its capacity becomes K

times. Hence $C' = 5C_0$. Energy stored $W_0 = \frac{q^2}{2C_0}$

$$\therefore W' = \frac{q^2}{2C'} = \frac{q^2}{2 \times 5C_0} \Rightarrow W' = \frac{W_0}{5}$$

16 **(d)**

Given circuit is balanced Wheatstone bridge. So capacitor of $2\mu F$ can be dropped from the circuit

17

Because current flows from higher potential to lower potential

18

(c)

Potential will be zero at two points

$$q_{1} = 2 \mu C \qquad M \qquad q_{2} = -1 \mu C \qquad N$$

$$o_{x} = 0 \qquad x = 4 \qquad x = 6 \qquad x = 12$$

$$(l \rightarrow k) = l^{2} \rightarrow l^{2$$

19

(c)

When a dipole *AB* of very small length is taken, then for a point *p* located at a distance *r* from the axis the electric field is given by

Where p is dipole moment. When dipole is rotated by 90°, then electric field is given by

$$E' = \frac{1}{4\pi\varepsilon_0} \cdot \frac{p}{r^3} \quad \dots (ii)$$

20

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	А	А	В	С	В	В	D	D	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	А	С	C	В	D	В	С	С	D

