Class: XIIth
Date:

Solutions

Topic :- Electric charges and fields

1
(c)

$$
\begin{aligned}
& \tau_{\max }=p E=q(2 l) E=2 \times 10^{-6} \times 0.01 \times 5 \times 10^{5} \\
& =10 \times 10^{-3} \mathrm{~N}-m
\end{aligned}
$$

2
(a)

Following figures show the situations of charges fixed on the axis. An electron is placed to the left of these charges. The cases are as follows

Case I Let distance between $+q$ and $-4 q=d$
\therefore distance between $-e$ and $+q=x$
\therefore distance between $-e$ and $-4 q=(x+d)$

Now, force between $-e$ and $+q$

$$
F_{1}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q e}{x^{2}} \quad \text { (attractive) }
$$

Force between $-e$ and $-4 q$

$$
F_{2}=\frac{1}{4 \pi \varepsilon_{0}(x+d)^{2}} \quad \text { (repulsive) }
$$

Solving, we get

$$
\begin{aligned}
\quad x & =d \\
\therefore F_{1} & =-F_{2} \\
F_{\text {net }} & =0
\end{aligned}
$$

Hence no net force acts on the electron and so it will be in equilibrium.
Case II In this case force acting between e and $-q$

$$
F_{1}=\frac{1}{4 \pi \varepsilon_{0} x^{2}} \quad \text { (repulsive) }
$$

and force between $-e$ and $+4 q$
$F_{2}=-\frac{1 \quad 4 q e}{4 \pi \varepsilon_{0}(x+d)^{2}} \quad$ (attractive)
Solving we get

$$
\begin{array}{ll}
& x=d \\
\therefore & F_{1}=-F_{2} \quad \text { (numerically) }
\end{array}
$$

\therefore Net force on $-e$ is zero
Case III Again force between $-e$ and $4 q$

Similarly, $F_{1}=-\frac{14 q e}{4 \pi \varepsilon_{0} x^{2}} \quad$ (attractive)

$$
F_{2}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q e}{(x+d)^{2}} \quad \text { (repulsive) }
$$

Since, electron is closer to $+4 q$ than $-q$, so $F_{1}>F_{2}$
In this case electron will not remain at rest and starts moving towards the system.
Case IV In this case force between $-e$ and $-4 q$

$F_{1}=+\frac{14 q e}{4 \pi \varepsilon_{0} x^{2}} \quad$ (repulsive)
Force between $-e$ and $+q$
$F_{2}=-\frac{1}{4 \pi \varepsilon_{0}(x+d)^{2}} \quad$ (attractive)
Since, electron is closer to $-4 q$ than $+q$, then $F_{1}>F_{2}$.
Thus, electron will move away from the system. It means equilibrium stage cannot be obtained.
(a)

Electric flux is equal to the product of an area element and the perpendicular component of E. As the surface is lying in Y-Z plane
$\therefore \boldsymbol{E} . d \boldsymbol{A}=\phi=(5)(20)$
$=100$ unit.
(b)
$E_{x}=-\frac{d V}{d x}=+k y ; E_{y}=-\frac{d V}{d y}=+k x$

$\Rightarrow E=\sqrt{E_{x}^{2}+E_{y}^{2}}=k \sqrt{x^{2}+y^{2}}=k r \Rightarrow E \propto r$

$\left(E_{1}\right)=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{\left(\frac{d}{2}\right)^{2}}$
Similarly, electric field due to - 2 charge
$\left(E_{2}\right)=\frac{1}{4 \pi \varepsilon_{0}} \frac{(Q)}{\left(\frac{d}{2}\right)^{2}}$
Therefore, net electric field at point

$$
\begin{aligned}
& E=E_{1}+E_{2} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{4 Q}{d^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{4 Q}{d^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{8 Q}{d^{2}}
\end{aligned}
$$

8
(d)

Capacitance of the given assembly
$C=4 \pi \varepsilon_{0}\left(\frac{R_{1} R_{2}}{R_{2}-R_{1}}\right) \Rightarrow C \propto \frac{R_{1} R_{2}}{\left(R_{2}-R_{1}\right)}$

9
(c)
$U=\frac{1}{2} C V^{2}$
Now if V is constant, then U is greatest when ' $C_{e q}$ ' is maximum. This is when all the three are in parallel
(a)
$\frac{1}{C_{e q}}=\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \Rightarrow C_{e q}=1 \mu F$
Total charge $Q=C_{\text {eq }} \cdot V=1 \times 24=24 \mu C$
So p.d. across $6 \mu F$ capacitor $=\frac{24}{6}=4$ volt
(c)

$\left|E_{A}\right|=\left|E_{B}\right|=k \cdot \frac{q}{a^{2}}$
So, $E_{\text {net }}=\sqrt{E_{A}^{2}+E_{B}^{2}+2 E_{A} E_{B} \cos 60^{\circ}}$
$=\frac{\sqrt{3} k \cdot q}{a^{2}}$
$\Rightarrow E_{n e t}=\frac{\sqrt{3} q}{4 \pi \varepsilon_{0} a^{2}}$
(c)

Electric lines of force never intersect the conductor. They are perpendicular and slightly curved near the surface of conductor
(b)

When a dielectric K is introduced in a parallel plate condenser its capacity becomes K times. Hence $C^{\prime}=5 C_{0}$. Energy stored $W_{0}=\frac{q^{2}}{2 C_{0}}$
$\therefore W^{\prime}=\frac{q^{2}}{2 C^{\prime}}=\frac{q^{2}}{2 \times 5 C_{0}} \Rightarrow W^{\prime}=\frac{W_{0}}{5}$
(d)

Given circuit is balanced Wheatstone bridge.
So capacitor of $2 \mu F$ can be dropped from the circuit

(b)

Because current flows from higher potential to lower potential
(c)

Potential will be zero at two points

At internal point (M): $\frac{1}{4 \pi \varepsilon_{0}} \times\left[\frac{2 \times 10^{-6}}{(6-l)}+\frac{\left(-1 \times 10^{-6}\right)}{l}\right]=0$
$\Rightarrow l=2$
So distance of M from origin; $x=6-2=4$
At exterior point (N)
$\frac{1}{4 \pi \varepsilon_{0}} \times\left[\frac{2 \times 10^{-6}}{\left(6+l^{\prime \prime}\right)}+\frac{\left(-1 \times 10^{-6}\right)}{l^{\prime \prime}}\right]=0 \Rightarrow l^{\prime \prime}=6$
So distance of N from origin, $x=6+6=12$

When a dipole $A B$ of very small length is taken, then for a point p located at a distance r from the axis the electric field is given by

$$
\begin{equation*}
E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 p}{r^{3}} \tag{i}
\end{equation*}
$$

Where p is dipole moment. When dipole is rotated by 90°, then electric field is given by
$E^{\prime}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{p}{r^{3}}$

From Eqs. (i) and (ii), we get

(d)
$Q_{1}+Q_{2}=Q \ldots$ (i) and $F=k \frac{Q_{1} Q_{2}}{r^{2}} \ldots$ (ii)
From (i) and (ii) $F=\frac{k Q_{1}\left(Q-Q_{1}\right)}{r^{2}}$
For F to be maximum $\frac{d F}{d Q_{1}}=0 \Rightarrow Q_{1}=Q_{2}=\frac{Q}{2}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	A	A	B	C	B	B	D	D	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	C	A	C	C	B	D	B	C	C	D			

