Class: XIIth
Date :

## Solutions

Subject : PHYSICS
DPP No. :6

## Topic :- Electric charges and fields

1
(c)
$\frac{1}{C}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2} \Rightarrow C=\frac{2}{3} F$
(a)

By using $\frac{1}{2} m\left(v_{1}^{2}-v_{1}^{2}\right)=Q V$
$\Rightarrow \frac{1}{2} \times 10^{-3}\left[v_{1}^{2}-(0.2)^{2}\right]=10^{-8}(600-0)$
$\Rightarrow v_{1}=22.8 \mathrm{~cm} / \mathrm{s}$
(d)

Potential energy of dipole in electric field $U=-P E \cos \theta$; where $\theta$ is the angle between electric field and dipole
(a)

Consider an electric dipole consisting of two point charges -q and +q separated by a small distance $A B=2 a$ with centre at $O$,


As shown in figure, on equatorial line, the resultant electric field $\boldsymbol{E}$ of $\boldsymbol{E}_{1}$ and $\boldsymbol{E}_{2}$ is parallel to the axis of the dipole but opposite to the direction of the dipole moment $\mathbf{p}$ as it is
directed from negative charge to positive charge.
(d)

Number of electric transferred, $n=\frac{q}{e}$
Mass transferred $=m_{e} \times n=m_{e} \times\left(\frac{q}{e}\right)$
$=9.1 \times 10^{-31} \times\left(\frac{2 \times 10^{-7}}{1.6 \times 10^{-19}}\right)$
$11.38 \times 10^{-19} \mathrm{~kg}$

Initially, force between $A$ and $C F=K \frac{Q^{2}}{r^{2}}$


When a similar sphere $B$ having charge $+Q$ is kept at the mid point of the line joining $A$ and $C$, then Net force on $B$ is $F_{n e t}=F_{A}+F_{C}=k \frac{Q^{2}}{(r / 2)^{2}}+\frac{k Q^{2}}{(r / 2)^{2}}=8 \frac{k Q^{2}}{r^{2}}=8 F$
(d)

If charge acquired by the smaller sphere is $Q$ then it's
potential $120=\frac{k Q}{2}$
Whole charge comes to outer sphere

Also potential of the outer sphere
$V=\frac{k Q}{6}$
From equation (i) and (ii) $V=40$ volt
(d)
$C=\frac{\varepsilon_{0} A}{d}$ and $C^{\prime}=\frac{\varepsilon_{0} A}{\left(d-\frac{d}{2}+\frac{(d / 2)}{\infty}\right)}=\frac{2 \varepsilon_{0} A}{d}$
$\Rightarrow C^{\prime}=2 C$

10

11
(d)
$C_{\text {air }}=\frac{C_{\text {medium }}}{K}=\frac{C}{2}$
(a)

From Gauss' theorem,
$E \propto \frac{q}{r^{2}} \quad(q=$ charge enclosed $)$
$\frac{E_{2}}{E_{1}}=\frac{q_{2}}{q_{1}}=\frac{r_{1}^{2}}{r_{2}^{2}}$
$8=\frac{\int_{0}^{R}\left(4 \pi r^{2}\right) k r^{a} d r}{\int_{0}^{R / 2}\left(4 \pi r^{2}\right) k r^{a} d r} \times \frac{\left(\frac{R}{2}\right)^{2}}{(R)^{2}}$
Solving this equation we get, $a=2$
(d)

There are 10 electrons and 10 protons in a neutral water molecule.
So it's dipole moment is $p=q(2 l)=10 e(2 l)$
Hence length of the dipole i.e. distance between centres of positive and negative charges is $2 l=\frac{p}{10 e}=\frac{6.4 \times 10^{-30}}{10 \times 1.6 \times 10^{-19}}=4 \times 10^{-12} \mathrm{~m}=4 \mathrm{pm}$
(d)

An imaginary cube can be made by considering charge $q$ at the centre and given square is one of it's face


So flux from given square (i.e. one face) $\phi=\frac{q}{6 \varepsilon_{0}}$
(c)

Let $d$ be the distance between the plates and $k$ be the dielectric constant. Without disconnecting the battery, $V$ is the same
$E_{0}=\frac{\sigma}{\varepsilon_{0}} ; V_{0}=E_{0} d ; C_{0}=\frac{Q}{V_{0}}=\frac{\varepsilon_{0} A}{d}$
With dielectric,
$V$ remains the same, capacitance increases, $U$ which is energy stored $\left(\frac{1}{2} C V^{2}\right)$ increases;
$Q=C V$, charge increases
(a)

The potential difference across the parallel plate capacitor is $10 \mathrm{~V}-(-10 \mathrm{~V})=20 \mathrm{~V}$
Capacitance $=\frac{Q}{V}=\frac{40}{20}=2 F$
(c)

Common potential $V=\frac{6 \times 20+3 \times 0}{(6+3)}=\frac{120}{9}$ Volt
So, charge on $3 \mu F$ capacitor
$Q_{2}=3 \times 10^{-6} \times \frac{120}{9}=40 \mu \mathrm{C}$
(d)

The surface of the conductor is an equipotential surface since there is free flow of electrons within the conductor. Thus potential at $Q$ is the same as that at $P$. That is $V_{P}=V_{Q}=V$. The electric field $E$ at a point on the equipotential surface of the conductor is inversely proportional to the square of the radius of curvature $r$ at that point. That is $E \propto r^{-2}$ Since point $Q$ has a larger radius of curvature than that at point $P$, the electric field at $Q$ is less than that at $P$. That is $E_{Q}<E_{P}=E$

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |  |
| A. | $\mathbf{C}$ | $\mathbf{A}$ | $\mathbf{D}$ | $\mathbf{A}$ | $\mathbf{D}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{D}$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Q. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |  |
| A. | D | A | D | D | D | C | A | C | D | A |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

