Class: XIIth
Date :

## Solutions

## Topic :- Electric charges and fields

1

2

3

4

5
(d)
$F \propto \frac{1}{r^{2}}$; so when $r$ is halved the force becomes four times
(c)

Electric field between the plates is


8
(c)

According to Gauss law $\oint E . d s=\frac{q l}{\varepsilon_{0}}$
$\oint E . d s=2 \pi r l ; \quad[E$ is constant $]$
$\therefore E .2 \pi r l=\frac{q l}{\varepsilon_{0}} \Rightarrow E=\frac{q}{2 \pi \varepsilon_{0} r}$ i.e. $E \propto \frac{1}{r}$

9 (d)

(b)

$$
F \propto \frac{1}{r^{2}} \Rightarrow \frac{F_{1}}{F_{2}}=\left(\frac{r_{2}}{r_{1}}\right)^{2} \Rightarrow \frac{5}{F_{2}}=\left(\frac{0.04}{0.06}\right)^{2}=F_{2}=11.25 \mathrm{~N}
$$

(b)

The charged particle could be positive or negative. The positive charge will move in the direction of the field. But negative charge will move opposite to the field
(b)

All the three plates will produce electric field at $P$ along negative $z$-axis. Hence,
$\boldsymbol{E}_{p}=\left[\frac{\sigma}{2 \varepsilon_{0}}+\frac{2 \sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}}\right](-\hat{\boldsymbol{k}})$
$=-\frac{2 \sigma}{\varepsilon_{0}} \hat{\boldsymbol{k}}$
(b)

Charge enclosed by cylindrical surface (length 100 cm ) is $Q_{e n c}=100 Q$. By applying Gauss's law $\phi=\frac{1}{\varepsilon_{0}}\left(Q_{\text {enc. }}\right)=\frac{1}{\varepsilon_{0}}(100 Q)$
(a)
$K E=q V$
(d)

In the pressure of medium force becomes $\frac{1}{K}$ times
(a)

Resolve $E$ along $C O$ and $B O$ into two perpendicular components


The sine components cancel each other
The cosine components add up along $O A$ to give $2 E \cos 60^{\circ}$
$\therefore$ Resultant field along $A O=2 E-2 E \cos 60^{\circ}$
$=2 E-E=E$
$\therefore$ Resultant field is $E$ along $A O$
(d)

Potential due to dipole in general position is given by
$V=\frac{k \cdot p \cos \theta}{r^{2}} \Rightarrow V=\frac{k . p \cos \theta r}{r^{3}}=\frac{k .(\vec{p} \cdot \vec{r})}{r^{3}}$
(d)

$\Rightarrow C_{A B}=5 \mu F$
(d)

The given figure is equivalent to a balanced Wheatstone's bridge, hence $C_{e q}=6 \mu F$

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |  |
| A. | A | B | D | A | D | C | D | C | D | B |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Q. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |  |
| A. | B | B | B | A | D | A | D | D | D | C |  |
|  |  |  |  |  |  |  |  |  |  |  |  |



