

Subject: PHYSICS Class: XIIth **DPP No.: 2** Date:

1.	Two charged spheres of radii R_1 and R_2 having equal surface charge density. The ratio of their
	potential is

- a) R_1/R_2
- b) R_2/R_1
- c) $(R_1/R_2)^2$ d) $(R_2/R_1)^2$

2. The magnitude of electric field
$$E$$
 in the annular region of a charged cylindrical capacitor a) Is same throughout

- b) Is higher near the outer cylinder than near the inner cylinder
- c) Varies as 1/r, where r is the distance from the axis
- d) Varies as $1/r^2$, where r is the distance from the axis

- a) Uniformly in the metal object
- b) Uniformly on the surface of the object
- c) Such that potential energy of the system is minimised
- d) Such that the total heat loss is minimised

4. Charge on
$$\alpha$$
-particle is

a)
$$4.8 \times 10^{-19} C$$

b)
$$1.6 \times 10^{-19} C$$

c)
$$3.2 \times 10^{-19}$$
 C

c)
$$3.2 \times 10^{-19} C$$
 d) $6.4 \times 10^{-19} C$

a)
$$x = \frac{d}{\sqrt{2}}$$

b)
$$x = \frac{d}{2}$$

b)
$$x = \frac{d}{2}$$
 c) $x = \frac{d}{2\sqrt{2}}$

$$d) x = \frac{d}{2\sqrt{3}}$$

a) 1.0

- b) 0.75
- c) 0.5

d) 0.25

- 7. A capacitor of capacitance value 1μ *F* is charged to 30 *V* and the battery is then disconnected. If it is connected across a 2μ *F* capacitor, the energy lost by the system is
 - a) $300 \mu J$
- b) $450 \mu I$
- c) $225 \mu J$
- d) 150 μI
- 8. If the electric flux entering and leaving an enclosed surface respectively are ϕ_1 and ϕ_2 , the electric charge inside the surface will be
 - a) $(\phi_2 \phi_1)\varepsilon_0$

- b) $\frac{\Phi_1 + \Phi_2}{\varepsilon_0}$ c) $\frac{\Phi_1 \Phi_2}{\varepsilon_0}$ d) $\varepsilon_0(\Phi_1 \Phi_2)$
- An electron is released from the bottom plate A as shown in the figure $(E = 10^4 N/C)$. The velocity of the electron when it reaches plate *B* will be nearly equal to

- a) $0.85 \times 10^7 \, m/s$
- b) $1.0 \times 10^7 \, m/s$
- c) $1.25 \times 10^7 \, m/s$ d) $1.65 \times 10^7 \, m/s$
- 10. There are two equipotential surfaces as shown in figure. The distance between them is r. The charge of -q coulomb taken from the surface A to B, the resultant work done will be

a)
$$W = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

- b) $W = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$ c) $W = -\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$ d) W = zero

11. Find equivalent capacitance between *A* and *B*

a) 6C

b) 5*C*

c) 3*C*

d)^{2C}

12. A frictionless dielectric plate *S* is kept on a frictionless table *T*. A charged parallel plate

capacitance C (of which the plates are frictionless) is kept near it. The plate S is in between the plates. When the plate *S* is left between the plates

- a) It will remain stationary on the table
- b) It is pulled by the capacitor and will pass on the other end
- c) It is pulled between the plates and will remain there
- d) All the above statements are false
- 13. Two condensers, one of capacity C and the other of capacity C/2, are connected to a V-volt battery, as shown

The work done in charging fully both the condensers is

- a) $2CV^2$
- b) $\frac{1}{4}CV^2$
- c) $\frac{3}{4}CV^2$
- $d)\frac{1}{2}CV^2$
- 14. A parallel plate capacitor is connected to a battery. The plates are pulled apart with a uniform speed. If x is the separation between the plates, the time rate of change of electrostatic energy of capacitor is proportional to
 - a) x^{-2}

- b) x
- c) x^{-1}
- d) x^2
- 15. Two conducting sphere of radii r_1 and r_2 are charged to the same surface charge density. The ratio of electric field near their surface is
 - a) r_1^2 / r_2^2 b) r_2^2 / r_1^2 c) r_1 / r_2
- d)1:1

- 16. A capacitor $4 \mu F$ charged to 50 V is connected to another capacitor of $2 \mu F$ charged to 100 V with plates of like charges connected together. The total energy before and after connection in multiples of $(10^{-2} J)$ is
 - a) 1.5 and 1.33
- b) 1.33 and 1.5
- c) 3.0 and 2.67
- d) 2.67 and 3.0
- 17. Capacitors are used in electrical circuits where appliances need more
 - a) Current
- b) Voltage
- c) Watt
- d) Resistance
- 18. A hollow charged metal sphere has a radius *r*. If the potential difference between its surface and a point at a distance 3*r* from the centre is *V*, then electrical intensity at distance 3*r* from the centre is
 - a) $\frac{V}{2r}$

b) $\frac{V}{3r}$

c) $\frac{V}{4r}$

 $d)\frac{V}{6r}$

- 19. In a charged capacitor, the energy resides
 - a) The positive charges
 - c) The field between the plates
- b) Both the positive and negative charges
- d) Around the edge of the capacitor plates
- 20. An infinite number of electric charges each equal to 5 nano coulomb (magnitude) are placed along X-axis at x = 1 cm, x = 2 cm, x = 4 cm x = 8 cm...... and so on. In the setup if the consecutive charges have opposite sign, then the electric field in Newton/Coulomb at X = 0 is

$$\left[\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 N - m^2/c^2\right]$$

- a) 12×10^4
- b) 24×10^4
- c) 36×10^4
- d) 48×10^4