Class: XIIth
Date:
Solutions
Subject : PHYSICS
DPP No. :10

Topic :- Electric charges and fields

1
(a)

Suppose that a point B, where net electric field is zero due to charges $8 q$ and $-2 q$.

$\boldsymbol{E}_{B O}=\frac{-1}{4 \pi \varepsilon_{0}} \cdot \frac{8 q}{a^{2}} \hat{\boldsymbol{i}}$
$\boldsymbol{E}_{B A}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{+2 q}{(a+L)^{2}} \hat{\boldsymbol{I}}$
According to condition $\boldsymbol{E}_{B O}+\boldsymbol{E}_{B A}=0$
$\therefore \frac{1}{4 \pi \varepsilon_{0}} \frac{8 q}{a^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{(a+L)^{2}}$
$\Rightarrow \frac{2}{a}=\frac{1}{a+L}$
$\Rightarrow 2 a+2 L=a$
$\therefore 2 L=-a$
Thus, at distance $2 L$ from origin, net electric field will be zero.
2
(c)

Force acting between two current carrying conductors

$$
\begin{equation*}
F=\frac{\mu_{0} I_{1} I_{2}}{2 \pi d} l \tag{i}
\end{equation*}
$$

Where $d=$ distance between the conductors

$$
l=\text { length of each conductor }
$$

Again, $F^{\prime}=\frac{\mu_{0}\left(-2 I_{1}\right)\left(I_{2}\right)}{2 \pi} \frac{(3 d)}{(3)}$

$$
\begin{equation*}
=-\frac{\mu_{0}}{2 \pi} \frac{2 I_{1} I_{2}}{d} . l . \tag{ii}
\end{equation*}
$$

Thus, from Eqs.(i) and ii

$$
\frac{F^{\prime}}{F}=-\frac{2}{3} \Rightarrow F^{\prime}=-\frac{2}{3} F
$$

(b)

In the following figure, in equilibrium $F_{e}=T \sin 30^{\circ}, r=1 m$

$\Rightarrow 9 \times 10^{9} \cdot \frac{Q^{2}}{r^{2}}=T \times \frac{1}{2}$
$\Rightarrow 9 \times 10^{9} . \frac{\left(10 \times 10^{-6}\right)^{2}}{1^{2}}=T \times \frac{1}{2} \Rightarrow T=1.8 \mathrm{~N}$
(a)

Electric field due to a hollow spherical conductor is governed by following equation
$E=0$, for $r<R$
and $E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$ for $r \geq R$
i.e. inside the conductor field will be zero and outside the conductor will vary according to $E \propto \frac{1}{r^{2}}$
(c)
$E=\frac{\sigma}{2 \varepsilon}=\frac{\sigma}{2 \varepsilon_{0} K}$
(c)

In uniform electric field dipole experience only torque but no force
(c)
$K=\frac{t}{t-d^{\prime}} \Rightarrow 2=\frac{1}{1-d^{\prime}} \Rightarrow d^{\prime}=\frac{1}{2} \mathrm{~mm}$

So new distance $=3+\frac{1}{2}=3.5 \mathrm{~mm}$
(b)

Suppose q is placed at a distance x from $+9 e$, then for equilibrium net force on it must be zero i.e. $\left|F_{1}\right|=\left|F_{2}\right|$
$\underset{Q_{1}=+9 e}{\text { Which gives }} x_{1}=\frac{x}{\sqrt{\frac{Q_{2}}{Q_{1}}+1}{ }_{q}}=\frac{16}{\sqrt{\frac{e}{9 e}}+1}=12 \mathrm{~cm}$

(a)

Let us take a small area ΔS on the cylindrical surface.

The normal to this area will be perpendicular to the axis of the cylinder and electric field is parallel to axis of cylinder.

So, flux $\Delta \phi=\mathbf{E} . \Delta \mathbf{S}$
$=E \Delta S \cos 90^{\circ}=0$
Summing over the entire surface, the total flux from the surface of cylinder is zero.
(d)

Potential at $C V_{C}=0$
Potential at $D V_{D}=\frac{K(-q)}{L}+\frac{K q}{3 L}=-\frac{2 K q}{3 L}$
\therefore Potential difference $V_{D}-V_{C}=-\frac{2 K q}{3 L}$
$\Rightarrow W=Q \cdot\left(V_{D}-V_{C}\right)=-\frac{2}{3} \times \frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q Q}{L}=-\frac{q Q}{6 \pi \epsilon_{0} L}$

(a)

Energy required to charge the capacitor is $W=U=Q V$
$\Rightarrow U=C V^{2}=\frac{\varepsilon_{0} A}{d} \cdot V^{2}=\frac{\varepsilon_{0} A d}{d^{2}} V^{2}=\varepsilon_{0} E^{2} A d$
$\left[\because E=\frac{V}{d}\right]$
(c)
$U=\frac{1}{2} C V^{2}=\frac{1}{2} \times 2 \times(200)^{2} \times 10^{-6}=0.04 J$
(c)

Electric field near the conductor surface is given by $\frac{\sigma}{\varepsilon_{0}}$ and it is perpendicular to surface (b)

Force on $-q_{1}$

From above, x^{\prime} component of force is

$F_{x}=\frac{q_{1}}{4 \pi \varepsilon_{0}}\left[\frac{q_{2}}{b^{2}}+\frac{q_{3}}{a^{2}} \sin \theta\right]$
$F_{x} \propto\left[\frac{q_{2}}{b^{2}}+\frac{q_{3}}{a^{2}} \sin \theta\right]$
7 (c)
Top of the stratosphere has an electric field E is nearly equal to $100 \mathrm{~V} / \mathrm{m}$
(d)

$$
\begin{aligned}
& U_{i}=\frac{1}{2}(2) V^{2}, V_{\text {common }}=\frac{V}{5} \\
& U_{f}=\frac{1}{2}(2+8)\left(\frac{V}{5}\right)^{2} \\
& \frac{U_{i}-U_{f}}{U_{i}} \times 100 \\
& =\frac{V^{2}-\frac{V^{2}}{5}}{V^{2}} \times 100 \\
& \frac{4}{5} \times 100=80 \%
\end{aligned}
$$

(b)

$$
E=9 \times 10^{9} \cdot \frac{Q}{r^{2}}=9 \times 10^{9} \times \frac{5 \times 10^{-6}}{(0.8)^{2}}=7 \times 10^{4} N / C
$$

(d)

In case of an electric dipole, $F \propto \frac{1}{r^{3}}$
$\therefore \quad$ new force $=F / 2^{3}=F / 8$.

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	C	B	A	C	A	A	C	C	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	D	A	C	C	B	C	D	B	D			

