Class: XIIth
Date :
Solutions

Topic :- Dual nature of radiation and matter

3
(c)

Potential difference $V=\frac{h c}{e \lambda}$

$$
\begin{aligned}
& =\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19} \times 2 \times 10^{-10}} \\
& =6200 \mathrm{~V}
\end{aligned}
$$

6
(c)
$E=\frac{h c}{\lambda}-W_{0}$ and $2 E=\frac{h c}{\lambda^{\prime}}-W_{0}$
$\Rightarrow \frac{\lambda^{\prime}}{\lambda}=\frac{E+W_{0}}{2 E+W_{0}} \Rightarrow \lambda^{\prime}=\lambda\left(\frac{1+W_{0} / E}{2+W_{0} / E}\right)$
Since $\frac{\left(1+W_{0} / E\right)}{\left(2+W_{0} / E\right)}>\frac{1}{2}$ so $\lambda^{\prime}>\frac{\lambda}{2}$
(c)
$m \mathrm{~g}=q E$ or $\frac{4}{3} \pi r^{3} \rho \mathrm{~g}=\frac{q V}{d}$ or $V \propto r^{3}$
$\therefore V_{2}=V_{1}\left(\frac{r_{2}}{r_{1}}\right)^{3}=400 \times\left(\frac{2}{1}\right)^{3}=3200 \mathrm{~V}$

8
(a)
$q v B=q E \Rightarrow v=\frac{E}{B}$
But $\frac{1}{2} m v^{2}=q V$ so $\frac{q}{m}=\frac{v^{2}}{2 V}=\frac{E^{2}}{2 V B^{2}}$
9
(c)

When drop is stationary, then
$q_{1} E=6 \pi \eta r v_{0}$ or $q_{1}=6 \pi \eta r v_{0} / E$
When drop moves upwards, then
$3 q=\frac{6 \pi \eta r\left(v_{0}+v_{0}\right)}{E}=2 \times\left(\frac{6 \pi \eta r v_{0}}{E}\right)=2 q_{1}$
$\therefore \quad q_{1}=\frac{3}{2} q$
(b)

According to Einstein's photoelectric equation the work function of metal is given by $\therefore \phi=\mathrm{hc} / \lambda-\mathrm{KE}_{\mathrm{m}}$

$$
\begin{aligned}
& =\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{4000 \times 10^{-10}}-2 \mathrm{eV} \\
& =4.95 \times 10^{-19}-2 \mathrm{eV} \\
& =\frac{4.95 \times 10^{-19}}{1.6 \times 10^{-19}}-2 \mathrm{eV} \\
& =3 \mathrm{eV}-2 \mathrm{eV}=1 \mathrm{eV}
\end{aligned}
$$

(c)

According to the energy diagram of X-ray spectra
$\because \Delta E=\frac{h c}{\lambda} \Rightarrow \lambda \propto \frac{1}{\Delta E}$
($\Delta E=$ Energy radiated when e^{-}jumps from, higher energy orbit to lower energy orbit)
$\because(\Delta E)_{k_{\beta}}>(\Delta E)_{k_{\alpha}}>(\Delta E)_{L_{\alpha}} \therefore \lambda_{\alpha}^{\prime}>\lambda_{\alpha}>\lambda_{\beta}$
Also $(\Delta E)_{k_{\beta}}=(\Delta E)_{k_{\alpha}}+(\Delta E)_{L_{\alpha}}$
$\Rightarrow \frac{h c}{\lambda_{\beta}}=\frac{h c}{\lambda_{\alpha}}+\frac{h c}{\lambda_{\alpha}^{\prime}} \Rightarrow \frac{1}{\lambda_{\beta}}=\frac{1}{\lambda_{\alpha}}+\frac{1}{\lambda_{\alpha}^{\prime}}$
(c)
$n \rightarrow 2-1$
$E=10.2 \mathrm{eV}$
$k E=E-\phi$
$Q=10.20-3.57$
$h v_{0}=6.63 \mathrm{eV}$
$v_{0}=\frac{6.63 \times 1.6 \times 10^{-19}}{6.67 \times 10^{-34}}=1.6 \times 10^{15}$

18

19

20
(b)

Minimum wavelength $=5 \AA$
$\lambda=\frac{12.2 \AA}{\sqrt{V}}=5 \AA$
Acceleration potential $=6.25 \mathrm{~V}$
(c)
$\frac{1}{2} m v^{2}=\frac{h c}{\lambda}-\phi($ in eV $)$
$=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{4000 \times 10^{-10} \times 1.6 \times 10^{-19}}-2$
$=3.1-2=1.1 \mathrm{eV}=1.1 \times 1.6 \times 10^{-19} \mathrm{~J}$
$=1.76 \times 10^{-19} \mathrm{~J}$
$v=\frac{1.76 \times 10^{-19} \times 2}{9 \times 10^{-13}}$
$=6.2 \times 10^{5} \mathrm{~ms}^{-1}$
(c)

According to Mosley's law $v=a(Z-b)^{2}$ and $v \propto \frac{1}{\lambda}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	A	C	C	D	C	C	A	C	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	B	C	C	C	C	A	B	C	C			

