Class : XIIth Date :

Solutions

Subject : PHYSICS DPP No. : 9

Topic :- Dual nature of radiation and matter

3 (c) Potential difference $V = \frac{hc}{e\lambda}$ $= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 2 \times 10^{-10}}$ = 6200 V6 (c) $E = \frac{hc}{\lambda} - W_0 \text{ and } 2E = \frac{hc}{\lambda'} - W_0$ $\Rightarrow \frac{\lambda'}{\lambda} = \frac{E + W_0}{2E + W_0} \Rightarrow \lambda' = \lambda \left(\frac{1 + W_0/E}{2 + W_0/E}\right)$ Since $\frac{(1 + W_0/E)}{(2 + W_0/E)} > \frac{1}{2} \text{ so } \lambda' > \frac{\lambda}{2}$ 7 (c) $mg = q E \text{ or } \frac{4}{3}\pi r^3 \text{ } \rho g = \frac{qV}{a} \text{ } \text{ or } V \propto r^3$ $\therefore V_2 = V_1 \left(\frac{r_2}{r_1}\right)^3 = 400 \times \left(\frac{2}{1}\right)^3 = 3200V$ 8 (a) E

$$qvB = qE \Rightarrow v = \overline{B}$$

But $\frac{1}{2}mv^2 = qV$ so $\frac{q}{m} = \frac{v^2}{2V} = \frac{E^2}{2VB^2}$

9

(c)

When drop is stationary, then $q_1E = 6\pi \eta r v_0 \text{ or } q_1 = 6\pi \eta r v_0/E$ When drop moves upwards, then $3q = \frac{6\pi \eta r (v_0 + v_0)}{E} = 2 \times \left(\frac{6\pi \eta r v_0}{E}\right) = 2q_1$

$$\therefore \quad q_1 = \frac{3}{2} q$$

(b)

(b)

10

According to Einstein's photoelectric equation the work function of metal is given by $\therefore \phi = hc/\lambda - KE_m$

$$= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{4000 \times 10^{-10}} - 2eV$$

= 4.95 × 10⁻¹⁹ - 2 eV
= $\frac{4.95 \times 10^{-19}}{1.6 \times 10^{-19}} - 2 eV$
= 3 eV-2 eV = 1 eV

11

$$E_{k} = \frac{1}{2} \frac{q^{2}B^{2}r^{2}}{m} ie, r \propto \sqrt{E_{k}}$$

So, $r_{2} = r_{1}\sqrt{E_{k2}/E_{k1}} = R\sqrt{3} = \sqrt{3} R$

12 **(b)**

When the charged particle enters the magnetic field making angle other than 90⁰ with it, the path is helix.

13 **(c)**

By Moseley's law, $\sqrt{v} = a(Z - b)$ or, $v = a^2(Z - b)^2$ Comparing with the equation of a parabola, $y^2 = 4ax$ it conforms to graph *c*

14 **(c)**

According to Einstein's photoelectric equation

15 **(c)**

According to the energy diagram of X-ray spectra

$$:: \Delta E = \frac{hc}{\lambda} \Rightarrow \lambda \propto \frac{1}{\Delta E}$$

 $(\Delta E = \text{Energy radiated when } e^{-} \text{ jumps from, higher energy orbit to lower energy orbit)}$ $: (\Delta E)_{k_{\beta}} > (\Delta E)_{k_{\alpha}} > (\Delta E)_{L_{\alpha}} :: \lambda'_{\alpha} > \lambda_{\alpha} > \lambda_{\beta}$ Also $(\Delta E)_{k_{\alpha}} = (\Delta E)_{k_{\alpha}} + (\Delta E)_{k_{\alpha}}$

$$\Rightarrow \frac{hc}{\lambda_{\beta}} = \frac{hc}{\lambda_{\alpha}} + \frac{hc}{\lambda_{\alpha}'} \Rightarrow \frac{1}{\lambda_{\beta}} = \frac{1}{\lambda_{\alpha}} + \frac{1}{\lambda_{\alpha}'}$$

16

 $n \rightarrow 2 - 1$ $E = 10.2 \ eV$ $kE = E - \phi$

(c)

$$Q = 10.20 - 3.57$$

hv₀ = 6.63 eV
$$v_0 = \frac{6.63 \times 1.6 \times 10^{-19}}{6.67 \times 10^{-34}} = 1.6 \times 10^{15}$$

18

(b) Minimum wavelength = 5Å $\lambda = \frac{12.2 \text{ Å}}{\sqrt{V}} = 5\text{ Å}$ Acceleration potential = 6.25 *V*

19

20

(c)

$$\frac{1}{2}mv^{2} = \frac{hc}{\lambda} - \phi \text{ (in eV)}$$

$$= \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{4000 \times 10^{-10} \times 1.6 \times 10^{-19}} - 2$$

$$= 3.1 - 2 = 1.1 \text{ eV} = 1.1 \times 1.6 \times 10^{-19} \text{ J}$$

$$= 1.76 \times 10^{-19} \text{ J}$$

$$v = \frac{1.76 \times 10^{-19} \times 2}{9 \times 10^{-13}}$$

$$= 6.2 \times 10^{5} \text{ ms}^{-1}$$
(c)
According to Mosley's law $v = a(Z - b)^{2}$ and $v \propto \frac{1}{\lambda}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	А	C	C	D	С	С	А	С	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	В	C	C	С	C	A	В	С	C

