Class : XIIth Date :

Solutions

Subject : PHYSICS DPP No. : 8

Topic :- Dual nature of radiation and matter

2

(a) According to Einstein's photoelectric equation $eV = hc \left[\frac{1}{\lambda} - \frac{1}{\lambda_0}\right]$ Ist case $3eV_s = hc \left[\frac{1}{\lambda} - \frac{1}{\lambda_0}\right]$...(i) IInd case $eV_s = hc \left[\frac{1}{2\lambda} - \frac{1}{\lambda_0}\right]$...(ii) Dividing Eq. (i) by Eq. (ii), we get $\lambda_0 = 4\lambda$

3

 $K_{\rm max}$ of photoelectrons does not depend upon intensity of incident light.

4 **(b)**
$$\frac{\lambda_1}{\lambda_2} =$$

(d)

(b)

$$= \frac{h}{\frac{\sqrt{2mE}}{E}} \qquad \text{or} \quad \frac{\lambda_1}{\lambda_2} \propto E^{1/2}$$

6

$$p = \frac{E}{c} = \frac{hv}{c}$$

7 (d)

The mass of electron is about $\frac{1}{1836}$ times that of a neutron and angular momentum of electron is quantised in the hydrogen atoms but not the linear momentum of electron

(d)

$$hv - W_0 = \frac{1}{2}mv_{\max}^2 \Rightarrow \frac{hc}{\lambda} - \frac{hc}{\lambda_0} = \frac{1}{2}mv_{\max}^2$$

$$\Rightarrow hc\left(\frac{\lambda_0 - \lambda}{\lambda \lambda_0}\right) = \frac{1}{2}mv_{\max}^2 \Rightarrow v_{\max} = \sqrt{\frac{2hc}{m}}\left(\frac{\lambda_0 - \lambda}{\lambda \lambda_0}\right)$$

When wavelength is λ and velocity is v, then

$$v = \sqrt{\frac{2hc}{m}} \left(\frac{\lambda_0 - \lambda}{\lambda \lambda_0}\right) \quad \dots(i)$$

When wavelength is $\frac{3\lambda}{4}$ and velocity is v' then

$$v' = \sqrt{\frac{2hc}{m}} \left[\frac{\lambda_0 - (3\lambda/4)}{(3\lambda/4) \times \lambda_0} \right] \quad \dots (ii)$$

Divide equation (ii) by (i), we get

$$\frac{v'}{v} = \sqrt{\frac{[\lambda_0 - (3\lambda/4)]}{\frac{3}{4}\lambda\lambda_0}} \times \frac{\lambda\lambda_0}{\lambda_0 - \lambda}$$
$$v' = v \left(\frac{4}{3}\right)^{1/2} \sqrt{\frac{[\lambda_0 - (3\lambda/4)]}{\lambda_0 - \lambda}}$$
$$i.e. \ v' > v \left(\frac{4}{3}\right)^{1/2}$$

9

(a)

(b)

(a)

Velocity of photon (*i.e.* light) does not depend upon frequency. Hence the graph between velocity of photon and frequency will be as follows

Velocity of photon (*c*)

Frequency (v)

10

$$\lambda_{\min} = \frac{hc}{eV} \Rightarrow \lambda_1 = \frac{hc}{eV_1} \text{ and } \lambda_2 = \frac{hc}{eV_2}$$
$$\therefore \Delta \lambda = \lambda_2 - \lambda_1 = \frac{hc}{e} \left[\frac{1}{V_2} - \frac{1}{V_1}\right]. \text{ Given } V_2 = 1.5 V_1$$
on solving we get $V_1 = 16000 \text{ vol} t = 16 \text{ kV}$

12

$$\lambda_{\min} = \frac{12375}{40 \times 10^3} = 0.309 \text{ Å} \approx 0.31 \text{ Å}$$

13 **(a)**

Energy of photon, $E = hv = \frac{hc}{\lambda_{Ph}}$

where λ_{Ph} is the wavelength of a photon $\lambda_{ph} = \frac{hc}{E}$

Wavelength of the electron, $\lambda_e = \frac{h}{\sqrt{2mE}}$

$$\therefore \frac{\lambda_{Ph}}{\lambda_e} = \frac{hc}{E} \times \frac{\sqrt{2mE}}{h} = c_{\sqrt{\frac{2m}{E}}}$$

14 **(b)**

For electron and positron pair production, minimum energy is 1.02 *MeV* Energy of photon is given $1.7 \times 10^{-3}J = \frac{1.7 \times 10^{-13}}{1.6 \times 10^{-19}}$ = 1.06 *MeV* Since energy of photon is greater than 1.02 *MeV* So electron positron pair will be created

15 **(d)**

Velocity of photon $c = v\lambda$

16 **(d)**

According to Einstein's equation

$$hv = W_o + K_{max} \Rightarrow V_o = \left(\frac{h}{e}\right)v - \frac{W_o}{e}$$

This is the equation of straight line having positive slope (h/e) and intercept on $-V_o$ axis, equal to $\frac{W_o}{e}$

18

(a)

The force on a particle is

So,

$$F = q(E + v \times B)$$

or
 $F = F_e + F_m$
 $F_e = qE$
 $= -16 \times 10^{-18} \times 10^4 (-\hat{k})$
 $= 16 \times 10^{-14} \hat{k}$
and
 $F_m = -16 \times 10^{-18} (10\hat{i} \times B\hat{j})$
 $= -16 \times 10^{-17} \times B(+\hat{k})$
 $= -16 \times 10^{-17} B \times \hat{k}$

Since, particle will continue to move along + x-axis, so resultant force is equal to 0.

$$F_{e} + F_{m} = 0$$

$$\therefore 16 \times 10^{-14} = 16 \times 10^{-17} B$$

$$B = \frac{16 \times 10^{-14}}{16 \times 10^{-17}} = 10^{3}$$

$$B = 10^{3} \text{Wb-m}^{-2}$$

19

 \Rightarrow

(c)

(b)

 $E = hv/\lambda = \frac{hc}{e\lambda} (\text{in eV})$ = $\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 0.21} = 5.9 \times 10^{-6} \text{ eV}$

20

Electric force *(F)* is straight forwarded, given by

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	A	D	В	В	В	D	D	A	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	A	A	В	D	D	A	A	C	В

