Class: XIIth

Topic :- Dual nature of radiation and matter

2

Ist case
(a)

According to Einstein's photoelectric equation
$3 e V_{s}=h c\left[\begin{array}{ll}\frac{1}{\lambda} & \frac{1}{\lambda_{0}}\end{array}\right]$
IInd case

$$
\begin{equation*}
e V_{s}=h c\left[\frac{1}{2 \lambda}-\frac{1}{\lambda_{0}}\right] \tag{i}
\end{equation*}
$$

Dividing Eq. (i)by Eq. (ii), we get

$$
\lambda_{0}=4 \lambda
$$

(d)
$K_{\max }$ of photoelectrons doesnot depend upon intensity of incident light.

4
(b)
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{h}{\frac{\sqrt{n 2 E}}{\frac{h c}{E}}} \quad$ or $\quad \frac{\lambda_{1}}{\lambda_{2}} \propto E^{1 / 2}$
(b)
$p=\frac{E}{c}=\frac{h v}{c}$

8
(d)

The mass of electron is about $\frac{1}{1836}$ times that of a neutron and angular momentum of electron is quantised in the hydrogen atoms but not the linear momentum of electron
(d)
$h v-W_{0}=\frac{1}{2} m v_{\max }^{2} \Rightarrow \frac{h c}{\lambda}-\frac{h c}{\lambda_{0}}=\frac{1}{2} m v_{\max }^{2}$
$\Rightarrow h c\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)=\frac{1}{2} m v_{\max }^{2} \Rightarrow v_{\max }=\sqrt{\frac{2 h c}{m}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)}$
When wavelength is λ and velocity is v, then
$v=\sqrt{\frac{2 h c}{m}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)}$
When wavelength is $\frac{3 \lambda}{4}$ and velocity is v^{\prime} then
$v^{\prime}=\sqrt{\frac{2 h c}{m}\left[\frac{\lambda_{0}-(3 \lambda / 4)}{(3 \lambda / 4) \times \lambda_{0}}\right]}$
Divide equation (ii) by (i), we get
$\frac{v^{\prime}}{v}=\sqrt{\frac{\left[\lambda_{0}-(3 \lambda / 4)\right]}{\frac{3}{4} \lambda \lambda_{0}} \times \frac{\lambda \lambda_{0}}{\lambda_{0}-\lambda}}$
$v^{\prime}=v\left(\frac{4}{3}\right)^{1 / 2} \sqrt{\frac{\left[\lambda_{0}-(3 \lambda / 4)\right]}{\lambda_{0}-\lambda}}$
i.e. $v^{\prime}>v\left(\frac{4}{3}\right)^{1 / 2}$
(a)

Velocity of photon (i.e. light) does not depend upon frequency. Hence the graph between velocity of photon and frequency will be as follows

(b)
$\lambda_{\text {min }}=\frac{h c}{e V} \Rightarrow \lambda_{1}=\frac{h c}{e V_{1}}$ and $\lambda_{2}=\frac{h c}{e V_{2}}$
$\therefore \Delta \lambda=\lambda_{2}-\lambda_{1}=\frac{h c}{e}\left[\frac{1}{V_{2}}-\frac{1}{V_{1}}\right]$. Given $V_{2}=1.5 V_{1}$
on solving we get $V_{1}=16000$ volt $=16 \mathrm{kV}$
(a)
$\lambda_{\text {min }}=\frac{12375}{40 \times 10^{3}}=0.309 \AA \approx 0.31 \AA$

13
(a)

Energy of photon, $E=h v=\frac{h c}{\lambda_{p h}}$
where $\lambda_{P h}$ is the wavelength of a photon $\lambda_{p h}=\frac{h c}{E}$
Wavelength of the electron, $\lambda_{e}=\frac{h}{\sqrt{2 m E}}$

$$
\therefore \frac{\lambda_{P h}}{\lambda_{e}}=\frac{h c}{E} \times \frac{\sqrt{2 m E}}{h}=c \sqrt{\frac{2 m}{E}}
$$

(b)

For electron and positron pair production, minimum energy is 1.02 MeV
Energy of photon is given $1.7 \times 10^{-3} \mathrm{~J}=\frac{1.7 \times 10^{-13}}{1.6 \times 10^{-19}}$
$=1.06 \mathrm{MeV}$
Since energy of photon is greater than 1.02 MeV
So electron positron pair will be created
(d)

Velocity of photon $c=v \lambda$
(d)

According to Einstein's equation
$h v=W_{o}+K_{\max } \Rightarrow V_{o}=\left(\frac{h}{e}\right) v-\frac{W_{o}}{e}$
This is the equation of straight line having positive slope (h / e) and intercept on $-V_{o}$ axis, equal to $\frac{W_{o}}{e}$
(a)

The force on a particle is

So, $\quad \boldsymbol{F}=\mathrm{q}(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})$
or $\quad \mathbf{F}=\mathbf{F}_{\mathrm{e}}+\mathbf{F}_{\mathrm{m}}$

$$
\mathbf{F}_{\mathrm{e}}=\mathrm{q} \mathbf{E}
$$

$$
=-16 \times 10^{-18} \times 10^{4}(-\hat{k})
$$

$$
=16 \times 10^{-14} \hat{k}
$$

and

$$
\begin{aligned}
\mathbf{F}_{\mathrm{m}} & =-16 \times 10^{-18}(10 \hat{\mathrm{i}} \times B \hat{\mathrm{j}}) \\
& =-16 \times 10^{-17} \times B(+\hat{\mathrm{k}}) \\
& =-16 \times 10^{-17} B \times \hat{\mathrm{k}}
\end{aligned}
$$

Since, particle will continue to move along $+x$-axis, so resultant force is equal to 0 .

$$
\begin{gathered}
\mathbf{F}_{\mathrm{e}}+\mathbf{F}_{\mathrm{m}}=0 \\
\\
\Rightarrow \quad \therefore \quad 16 \times 10^{-14}=16 \times 10^{-17} B \\
B=\frac{16 \times 10^{-14}}{16 \times 10^{-17}}=10^{3} \\
B=10^{3} \mathrm{~Wb}-\mathrm{m}^{-2}
\end{gathered}
$$

19

20
(c)

$$
\begin{aligned}
& E=h v / \lambda=\frac{h c}{e \lambda}(\mathrm{in} \mathrm{eV}) \\
& =\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19} \times 0.21}=5.9 \times 10^{-6} \mathrm{eV}
\end{aligned}
$$

(b)

Electric force (F) is straight forwarded, given by

$$
F=q E
$$

Where, q is charge and E is electric field.
Given,
\therefore

$$
\begin{gather*}
q=3 e \\
F=3 \mathrm{e} E \tag{i}
\end{gather*}
$$

From Newton's law, force experienced by a particle of mass $2 m$ witn acceleration a is

$$
F=2 m a \ldots(\mathrm{ii})
$$

Equating Eqs. (i) and (ii) we get

$$
\begin{aligned}
3 e E & =2 m a \\
\Rightarrow \quad a & =\frac{3 e E}{2 m}
\end{aligned}
$$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	A	D	B	B	B	D	D	A	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	C	A	A	B	D	D	A	A	C	B			

