Class : XIIth Date :

DPPP DAILY PRACTICE PROBLEMS

Solutions

Subject : PHYSICS DPP No. : 7

Topic :- Dual nature of radiation and matter

1

$$\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34}}{1 \times 2000} = 3.3 \times 10^{-37} m = 3.3 \times 10^{-27} \text{\AA}$$

3

$$KE = \frac{p^2}{2m}$$

(a)

(b)

Momentum is same, so $KE \propto \frac{1}{m}$

Out of the given choice<mark>s, mass of electron is minimum, so its KE will be maximum.</mark>

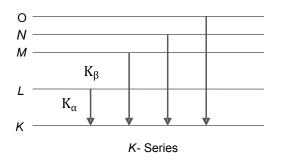
4 **(d)**

Cathode rays are beam of electrons

5 **(c)**

Due to 10.2 *eV* photon one photon of energy 10.2 *eV* will be detected. Due to 15 *eV* photon the electron will come out of the atom with energy (15 - 13.6)= 1.4 *eV*

6 **(a)**


Photos move with velocity of light and have energy hv. Therefore, they also exert pressure

7 **(d)**

The maximum KE of the emitted photoelectrons is independent of the intensity of the incident light but depends upon the frequency of the incident light

8 (a)

When the colliding electron remove an electron from innermost k-shell (corresponding to n=1) of atom and electron from some higher shell jumps to k-shell to fill up this vacancy, characteristic X-ray of k- series are obtained

 \therefore K_{α} and K_{β} X-rays are emitted when there is transition of electron between the levels n=2 to n=1 and n=3 to n=1 respectively.

9

(d) {Photoelectric effect \rightarrow Particle nature Diffraction \rightarrow Wave nature } Dual nature

10

(c)

$$p = \frac{E}{c} \Rightarrow E = p \times c = 2 \times 10^{-16} \times (3 \times 10^{10}) = 6 \times 10^{-6} erg$$

11 **(b)**

The momentum of the incident radiation is given as $p = \frac{h}{\lambda}$. When the light is totally reflected normal to the surface the direction of the ray is reversed. That means it reverses the direction of it's momentum without changing it's magnitude

$$\therefore \Delta p = 2p = \frac{2h}{\lambda} = \frac{2 \times 6.6 \times 10^{-34}}{6630 \times 10^{-10}} = 2 \times 10^{-27} kg - m/sec$$
(b)

12

Number of photons emitted is proportional to the intensity. Also $\frac{hc}{\lambda} = W_0 + E$

13 **(a)**

Since, de-Broglie wavelength is related to momentum by the relation

 \Rightarrow

$$\lambda = \frac{h}{p} \qquad \text{(where } h = \text{plack's constant })$$
For electron $\lambda_e = \frac{h}{P_e}$
For neutron $\lambda_n = \frac{h}{p_n}$
 $\therefore \qquad \frac{\lambda_e}{\lambda_n} = \frac{P_n}{P_e} \qquad \dots (i)$
Case I since, (KE)_{electron} = (KE)_{neutron}

 $\frac{p_e^2}{2m_e} = \frac{p_n^2}{2m_n}$

$$\Rightarrow \qquad \frac{p_n}{p_e} = \sqrt{\frac{m_n}{m_e}} \dots (ii)$$

From Eqs. (i) and (ii),we get

$$\frac{\lambda_e}{\lambda_n} = \sqrt{\frac{m_n}{m_e}}$$

But $m_n > m_e$ $\therefore \qquad \frac{m_n}{m_e} > 1$ $\Rightarrow \qquad \frac{\lambda_e}{\lambda_n} \gg 1$ $\lambda_e \gg \lambda_n$

case II If momenta are equal, then

$$p_e = p_n$$

From Eq.(i)

$$\frac{\lambda_e}{\lambda_n} = 1$$

Case III If speeds are same

 $v_e = v_n$

 $\frac{\lambda_e}{\lambda_n} \equiv \frac{p_n}{p_e} \equiv \frac{\underline{m}_n \underline{v}_n}{\underline{m}_e \underline{v}_e} \equiv \frac{\underline{m}_n}{\underline{m}_e}$

then

Now, $m_n \gg m_e$

$$\therefore \qquad \frac{m_n}{m_e} \gg 1$$
$$\therefore \qquad \frac{\lambda_e}{\lambda} \gg 1$$

$$rac{\overline{\lambda_n}}{\lambda_e} \gg 1$$
 $\lambda_e \gg \lambda_n$

14 (d) $\frac{\lambda_p}{\lambda_{\alpha}} = \frac{\frac{h}{\sqrt{2em_p V}}}{\sqrt{2 \times 2e4 m_p V}} = 2\sqrt{2}$ 15

(b)

$$n e E = 6\pi \eta r v \text{ or } n = \frac{6\pi \eta r v}{eE}$$
$$= \frac{6 \times 3.14 \times 1.6 \times 10^{-5} \times 5 \times 10^{-7} \times 0.01}{1.6 \times 10^{-19} \times 6.28 \times 10^{5}} = 15$$

136 **(a)**

Energy of the electron, when it comes out from the second plate = $200 \ eV - 100 \ eV = 100 \ eV$

Hence accelerating potential difference = 100 V

$$\lambda_{Electron} = \frac{12.27}{\sqrt{V}} = \frac{12.27}{\sqrt{100}} = 1.23\text{\AA}$$

17

(a)

$$\lambda = \frac{h}{\sqrt{2mE}} \Rightarrow \lambda \propto \frac{1}{\sqrt{m}} \Rightarrow \frac{\lambda_p}{\lambda_\alpha} = \sqrt{\frac{m_a}{m_p}} = \frac{2}{1}$$

18

(b) Given $m_0c^2 = 0.51 \text{ MeV}$ and v = 0.8 cK.E. of the electron $= mc^2 - m_0c^2$

But
$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{m_0}{\sqrt{1 - \left(\frac{0.8c}{c}\right)^2}} = \frac{m_0}{\sqrt{0.36}} = \frac{m_0}{0.6}$$

Now, $mc^2 = \frac{0.51}{0.6} MeV = 0.85 MeV$
 $\therefore K.E. = (0.85 - 0.51) MeV = 0.34 MeV$

(b)

(d)

Intensity of light source is

$$I \propto \frac{1}{d^2}$$

When distance is doubled, intensity becomes one-fourth. As number of photoelectrons \propto intensity, so number of photoelectrons is quarter of the initial number.

20

Given :
$$E = 13.2keV$$

 $\lambda(in \text{ Å}) = \frac{hc}{E(eV)} = \frac{12400}{13.2 \times 10^3} = 0.939\text{ Å} = 1\text{ Å}$

X-rays covers wavelengths ranging from about $10^{-8}m(10nm)$ to $10^{-3}m(10^{-4}nm)$.

An electromagnetic radiation of energy 13.2 *keV* belongs to *X*-ray region of electromagnetic spectrum

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	D	В	D	С	А	D	А	D	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	В	А	D	В	А	А	В	В	DG

