

Class : XIIth Date : Subject : PHYSICS DPP No. : 6

Topic :- Dual nature of radiation and matter

- 1. The ratio of the energy of a photon with $\lambda = 150$ nm to that with $\lambda = 300$ nm is a) 2 b) $\frac{1}{4}$ c) 4 d) $\frac{1}{2}$
- 2. Photoelectric emission is observed from a metallic surface for frequencies v_1 and v_2 of the incident light rays ($v_1 > v_2$). If the maximum values of kinetic energy of the photoelectrons emitted in the two cases are in the ratio of 1 :*k*, then the threshold frequency of the metallic surface is

a)
$$\frac{v_1 - v_2}{k - 1}$$
 b) $\frac{kv_1 - v_2}{k - 1}$ c) $\frac{kv_2 - v_1}{k - 1}$ d) $\frac{v_2 - v_1}{k}$

- 3. The cathode rays have particle nature because of the fact that
 - a) They can propagate in va<mark>cuum</mark>
 - b) They are deflected by electric and magnetic fields
 - c) They produced fluoresce<mark>nce</mark>
 - d) They cast shadows
- 4. The light rays having photons of energy 1.8 *eV* are falling on a metal surface having a work function 1.2 *eV*. What is the stopping potential to be applied to stop the emitting electrons a) 3 *eV* b) 1.2 *eV* c) 0.6 *eV* d) 1.4 *eV*
- 5. The cathode of a photoelectric cell is changed such that the work function changes from W_1 to $W_2(W_2 > W_1)$. If the current before and after change are I_1 and I_2 , all other conditions remaining unchanged, then (assuming $hv > W_2$) a) $I_1 = I_2$ b) $I_1 < I_2$ c) $I_1 > I_2$ d) $I_1 < I_2 < 2I_1$
- 6. The magnitude of saturation photoelectric current depends upon

 a) Frequency
 b) Intensity
 c) Work function
 d) Stopping potential
- 7. In Thomson mass spectrograph, singly and doubly ionised particles from similar parabola corresponding to magnetic fields of 0.8 T and 1.2 T for a constant electric field. The ratio of masses f ionised particles will be

- 8. The energy of a photon of light with wavelength 5000 Å is approximately 2.5 *eV*. This way the energy of an *X*-ray photon with wavelength 1Å would be a) 2.5/5000 eV b) $2.5/(5000)^2 eV$ c) $2.5 \times 5000 eV$ d) $2.5 \times (5000)^2 eV$
- 9. Which of the following event, support the quantum nature of light?

	a) Diffraction	b) Polarization	c) Interference	d)Photoelectric effect
10.	. For photoelectric emission, tungsten requires light of 2300 Å. If light of 1800 Å wavelength is			
	incident then emission			
	a) Takes place		b) Doesn't take place	
	c) May or may not take place		d) Depends on frequency	
11.	1. The ratio of de-Broglie wavelength of a α -particle to that of a proton being subjected to the			
	same magnetic field so that the radii of their path are equal to each other assuming the field			
	induction vector \vec{B} is p	erpendicular to the velo	ocity vectors of the α -particular	rticle and the proton is
	a) 1	b)1/4	c) 1/2	d)2
12.	Light of wavelength 4000 Å incident on a sodium surface for which the threshold wavelength o			
	photoelectrons is 5420 Å. The work function of sodium is			
	a) 0.57 eV	b) 1.14 eV	c) 2.29 eV	d)4.58 eV
13.	What is the difference between soft and hard <i>X</i> -rays			
	a) Velocity	b)Intensity	c) Frequency	d)Polarization
14.	An electron of mass m when accelerated through a potential difference V has de-Broglie			
	wavelength λ . The de-Broglie wavelength associated with a proton of mass M accelerated			
	through the same potential difference will be			
	n	m	M	M
	a) $\lambda \overline{M}$	$b J \lambda \sqrt{M}$	c) $\lambda - m$	$d \lambda_{m}$
15.	When a beam of accelerated electrons hits a target, a continuous X-ray spectrum is emitted			
	from the target. Which of the following wavelength is absent in the X-ray spectrum, if the X-ray			
	tube is operating at 40,000 volts			
	a) 0.25 Å	b) 0.5 Å	c) 1.5 Å	d) 1.0 Å
16.	The mass of a photo ele	ectro <mark>n is</mark>		
	a) $9.1 \times 10^{-27} kg$	b) $9.1 \times 10^{-29} kg$	c) 9.1 × $10^{-31}kg$	d) 9.1 × 10 ⁻³⁴ kg
17.	In a region, steady and unif <mark>orm e</mark> lectric magnetic fields are present. These two fields are			
	parallel to each other. A charged particle is released from rest in this region. The path of the			
	particle will be a			
	a) Helix	b) Straight line	c) Ellipse	d)Circle
18.	The photoelectric effect	t represents that		
	a) Light has a particle nature b) Electron has a wave nat		e nature	
	c) Proton has a wave n	ature	d) None of the above	
19.	Consider the following two statements A and B and identify the correct choice in the given			
	answer			
	A: The characteristic X -ray spectrum depends on the nature of the material of the target			
	B: The short wavelength limit of continuous <i>X</i> -ray spectrum varies inversely with the potential			
	difference applied to the X-rays tube			
	a) <i>A</i> is true and <i>B</i> is false		b) <i>A</i> is false and <i>B</i> is true	
	c) Both A and B are true d) Both A and B are false			
20.	During X-ray production from coolidge tube if the current in increased, then			
	a) The penetration power increases		b) The penetration power decreases	
	c) The intensity of <i>X</i> -rays increases		d) The intensity of X-rays decreases	