Class : XIIth Date :

Solutions

ACTICE PROBLE

Subject : PHYSICS DPP No. : 5

Topic :- Dual nature of radiation and matter

1

The work function of sodium

 $W = \frac{hc}{\lambda}$

or or

or

(b)

(b)

2

(b)

$$p = \frac{h}{\lambda} = \frac{6.6 \times 10^{-34}}{0.01 \times 10^{-10}} = 6.6 \times 10^{-22} kg - m/s$$

 $W = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{5 \times 10^{-7}}$

W = 2.5 eV(approximately)

 $W = 3.96 \times 10^{-19}$ J

 $W = 2.47 \, \text{eV}$

4

If an electron and a photon propagates in the form of waves having the same wavelength, it implies that they have same momentum. This is according to de-Broglie equation

 $(:: 1 \text{eV} = 1.6 \times 10^{-19} \text{ J})$

$$p \propto \frac{1}{\lambda}$$

6

(b) Retarding potential,

$$V_s = \frac{hc}{\lambda e} - \frac{\Phi_0}{e} = \frac{1240 \times 10^{-9}}{330 \times 10^{-9}} - 1.07$$
$$= 3.73 - 1.07 = 2.66 \text{ V}$$

7 **(b)** $V_{k} = (hm_{k} M_{k})$

 $K_{\text{max}} = (hv - W_0); v = \text{ frequency of incident light}$

8 (c)

$$\lambda_{\min} = \frac{12375}{50 \times 10^3} \text{ Å} = 0.247 = 0.25 \text{ Å}$$

9

(c)

(a)

$$E_K - E_L = \frac{hc}{\lambda} = \frac{(6.6 \times 10^{-34})(3 \times 10^8)}{(0.021 \times 10^{-9})(1.6 \times 10^{-19})} eV = 59 KeV$$

10

Maximum KE $= E - \phi_0 = 3.4 - 2 = 1.4 \text{ eV}$

11 (a)

The cut-off wavelength λ_{min} corresponds to an electron transferring (approximately) all of its energy to an X-ray photon, thus producing a photon with the greatest possible frequency and least possible wavelengh.

From relation

$$\lambda_{\min} = \frac{hc}{K_o} = \frac{(4.14 \times 10^{-15})(3 \times 10^8)}{35.0 \times 10^3} = 3.55 \times 10^{-11} \text{ m} = 35.5 \text{ pm}$$
(d)
de-Broglie wavelength

$$\lambda = \frac{h}{\sqrt{2mE}} : \qquad \lambda_1 = \sqrt{\frac{E_2}{E_1}} \Rightarrow \frac{1 \times 10^{-9}}{0.5 \times 10^{-9}} = \sqrt{\frac{E_2}{E_1}} = 4$$

$$\Rightarrow \qquad 2 = \sqrt{\frac{E_2}{E_1}} \Rightarrow \frac{E_2}{E_1} = 4$$

$$\therefore \qquad \text{Energy to be added} = E_2 - E_1$$

$$=4E_1 - E_1 = 3E_1$$

13

:.

(c)

12

We know that

$$qE = mg$$

 $\frac{qQ}{\varepsilon_0 A} = mg \text{ or } q = \frac{\varepsilon_0 Amg}{Q}$
 $= \frac{8.85 \times 10^{-12} \times 2 \times 10^{-2} \times 2.5 \times 10^{-7} \times 10}{5 \times 10^{-7}} C$
 $= 8.85 \times 10^{-13} C$

15

(b) For an electron Mass, $m_e = 9.11 \times 10^{-31} kg$

Kinetic energy,
$$K = 10eV = 10 \times 1.6 \times 10^{-19}J$$

de Broglie wavelength, $\lambda_e = \frac{h}{\sqrt{2m_eK}}$...(i)
For the person Mass, $m = 66kg$
Speed, $v = 100kmhr^{-1} = 100 \times \frac{5}{18}ms^{-1}$
de Broglie wavelength, $\lambda = \frac{h}{mv}$...(ii)
Diving (i) by (ii), we get
 $\frac{\lambda_e}{\lambda} = \frac{h}{\sqrt{2m_eK}} \times \frac{mv}{h} = \frac{mv}{\sqrt{2m_eK}}$
 $= \frac{66 \times 100 \times \frac{5}{18}}{\sqrt{2 \times 9.11 \times 10^{-31} \times 10 \times 1.6 \times 10^{-19}}} = 1.07 \times 10^{27}$

(b)

$$\lambda = \frac{h}{mv} = \frac{h\sqrt{1 - v^2/c^2}}{m_0 v} = 0$$
 (:: $v = c$)

18

20

(b)
Slope of
$$V_0 - v$$
 curve $= \frac{h}{e}$
 $\Rightarrow h = \text{Slope} \times e = 1.6 \times 10^{-19} \times 4.12 \times 10^{-15}$
 $= 6.6 \times 10^{-34} J$ -s

19 **(b)** The wavelength range of *X*-ray is 0.1 Å - 100 Å

(b)

$$q V = \frac{1}{2}mv^2$$
 or $v = \sqrt{2qV/m}$ ie, $v \propto \sqrt{V}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	В	В	В	С	В	В	С	C	А
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	D	C	D	В	A	В	В	В	В

