Class : XIIth Date :

Solutions

Subject : PHYSICS DPP No. : 4

Topic :- Dual nature of radiation and matter

1 (c)

Slope of $V_0 - v$ curve for all metals be same $\left(\frac{h}{e}\right)$, *i.e.*, curves should be parallel

2 **(b)**

According to de-Broglie hypothesis

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2mqV}}$$

$$\therefore \qquad \lambda = \frac{6.6 \times 10^{-34}}{\sqrt{2 \times (1.6 \times 10^{-27})(1.6 \times 10^{-19}) \times 1000}}$$

$$= \frac{6.6 \times 10^{-34}}{7.16 \times 10^{-22}}$$

$$= 0.9 \times 10^{-12} \text{ m}$$

3 (a) $i = \frac{N}{2}$

$$= \frac{Ne}{t} \Rightarrow \frac{N}{t} = \frac{i}{e} = \frac{3.2 \times 10^{-3}}{1.6 \times 10^{-19}} = 2 \times 10^{16}/s$$

- 4 (c) Speed of the cathode rays is $10^7 m/sec - 3 \times 10^7 m/s$
 - **(b)** Stopping potential $V_0 = \frac{hc}{e} \left[\frac{1}{\lambda} - \frac{1}{\lambda_0} \right]$. As λ decreases so V_0 increases
- 6 **(b)** The momentum of the photon $p = \frac{h}{\lambda} = \frac{hv}{c}$

7 **(c)**

5

When pressure in a tube is reduced in the range 1 cm and 10^{-3} cm; the mean free path of moving electron in the discharge tube increases. As a result of which the electron gets higher KE while moving towards anode and then cause ionisation of the atoms with which it will collide on its ways causing excitation phenomenon.

8 (c)

Specific charge on proton $= \left(\frac{e}{m}\right)_p$ =9.6 × 10⁷C - kg⁻¹ specific charge on α - particle, $\left(\frac{q}{m}\right)_{\alpha} = \frac{2e}{4m} = \frac{1}{2}\left(\frac{e}{m}\right)_p = \frac{1}{2} \times 9.6 \times 10^7$ = 4.8 × 10⁷C - kg⁻¹

9

(c)

 $mv = \frac{h}{2}$ or $v = \frac{h}{m\lambda} = \frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 5200 \times 10^{-10}}$ $= 1.4 \times 10^3 \,\mathrm{ms}^{-1}$

10 **(c)**

For photoelectric effect,

c effect,

$$eV_0 = hv \Rightarrow v = \frac{eV_0}{h}$$

 $v = \frac{1.6 \times 10^{-19} \times 3.2}{6.6 \times 10^{-34}}$
 $= 0.775 \times 10^{15} \text{Hz}$

11 **(a)**

On increasing wavelength of light of the photoelectric current decreases and at a certain wavelength (cut off) above which photoelectric current stops

12 **(a)**

If an electron and a proton propagating in the form of waves and their wavelength are same, then according to the relation

$$E = \frac{hc}{\lambda}$$
Also, $\lambda_{\text{electron}} = \lambda_{proton}$
 \therefore

 $E_e = E_p$

Hence, their energies are same.

13 **(b)**

Stopping potential does not depend upon intensity of incident light (I)

14 **(a)**

Any charge in the universe is given by

 $q = ne \Rightarrow e = \frac{q}{n} \text{ (where } n \text{ is an integer)}$ $q_{1}:q_{2}:q_{3}:q_{4}:q_{5}:q_{6}::n_{1}:n_{2}:n_{3}:n_{4}:n_{5}:n_{6}$ 6.563:8.204:11.5:13.13:16.48:18.09 $::n_{1}:n_{2}:n_{3}:n_{4}:n_{5}:n_{6}$ Divide by 6.563 $1:1.25:1.75:2.0:2.5:2.75::n_{1}:n_{2}:n_{3}:n_{4}:n_{5}:n_{6}$ Multiplied by 4 $4:5:7:8:10:11::n_{1}:n_{2}:n_{3}:n_{4}:n_{5}:n_{6}$ $e = \frac{q_{1}+q_{2}+q_{3}+q_{4}+q_{5}+q_{6}}{n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6}} = \frac{73.967 \times 10^{-19}}{45}$ $= 1.641 \times 10^{-19}C$ [Note : If you take 45.0743 in place of 45, you will get the exact value]

16 **(b)**

In the presence of inert gas photoelectrons emitted by cathode ionize the gas by collision and hence the current increases

17 **(a)**

Energy of photon $E = \frac{hc}{\lambda} = mc^2$; momentum of photon $= mc = h/\lambda$

18 **(b)**

In *X*-ray tube, target must be heavy element with high melting point

19 **(c)**

Robert Millikan performed the experiment to determine the charge on an electron. When a drop is suspended, its weight mg is exactly equal to the electric force applied qE, where E is electric field, q the charge, m the mass of drop and g the acceleration due to gravity.

Hence, solving for *q*, we get

$$q = \frac{mg}{E}$$

Given,
$$m = 16 \times 10^{-6}$$
kg, $g = 10 \text{ ms}^{-2}$,
 $E = 10^{6} \text{V} - \text{m}^{-1}$

:
$$q = \frac{16 \times 10^6 \times 10}{10^6} = 16 \times 10^{-11} \,\mathrm{C}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	В	A	С	В	В	C	C	C	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	А	A	В	A	D	В	A	В	C	C

