Class: XIIth

Topic :- Dual nature of radiation and matter

(b)

With the increase in intensity of light photoelectric current increases, but kinetic energy of ejected electron, stopping potential and work function remains unchanged
(c)

The wavelength of X-ray lines is given by Rydberg
Formula $\frac{1}{\lambda}=R Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
For K_{α} line, $n_{1}=1$ and $n_{2}=2$
$\therefore \frac{1}{\lambda}=R Z^{2}\left(\frac{3}{4}\right) \Rightarrow Z=\left(\frac{4}{3 R \lambda}\right)^{1 / 2}$
$=\left[\frac{4}{3\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)\left(0.76 \times 10^{-10} \mathrm{~m}\right)}\right]^{1 / 2}=39.99 \approx 40$
,
(d)
$q E=m g$
$6 \pi \eta r v=m g$
$\frac{4}{3} \pi r^{3} \rho \mathrm{~g}=m \mathrm{~g}$
$\therefore \quad r=\left(\frac{3 m \mathrm{~g}}{4 \pi \rho g}\right)^{1 / 3}$
Substituting the value of r in Eq. (ii), we get
or

$$
\begin{gathered}
6 \pi \eta v\left(\frac{3 m g}{4 \pi p g}\right)^{1 / 3}=m g \\
(6 \pi \eta v)^{3}\left(\frac{3 m g}{4 \pi \rho g}\right)=(m g)^{3}
\end{gathered}
$$

Again substituting $m g=q E$, we get

$$
\begin{array}{rlrl}
& \begin{aligned}
(q E)^{2} & =\left(\frac{3}{4 \pi \rho \mathrm{~g}}\right)(6 \pi \eta v)^{3} \\
\text { Or } & q E
\end{aligned} & =\left(\frac{3}{4 \pi \rho \mathrm{~g}}\right)^{1 / 2}(6 \pi \eta \mathrm{~g})^{3 / 2} \\
& \therefore & q & =\frac{1}{E}\left(\frac{3}{4 \pi \rho \mathrm{~g}}\right)^{\frac{1}{2}}(6 \pi \eta v)^{3 / 2}
\end{array}
$$

Substituting the values, we get

$$
\begin{aligned}
& q=\frac{7}{81 \pi \times 10^{5}} \sqrt{\frac{3}{4 \pi \times 900 \times 9.8} \times 216 \pi^{3}} \\
& \times \sqrt{\left(1.8 \times 10^{-5} \times 2 \times 10^{-3}\right)^{3}}=8.0 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

(c)
K.E. $=2 E_{0}-E_{0}=E_{0}($ for $0 \leq x \leq 1) \Rightarrow \lambda_{1}=\frac{h}{\sqrt{2 m E_{0}}}$
K.E. $=2 E_{0}($ for $x>1) \Rightarrow \lambda_{2}=\frac{h}{\sqrt{4 m E_{0}}} \Rightarrow \frac{\lambda_{1}}{\lambda_{2}}=\sqrt{2}$
(c)

Among the given metals, aluminium thermionically emits an electron at a relatively lowest temperature
(c)

Speed obtained by the particle after falling through a potential difference of V volt is

$$
\begin{aligned}
v_{A} & =\sqrt{\frac{2 V q}{m}} \ldots(i) \\
\text { And } \quad v_{B} & =\sqrt{\frac{2 V \times 4 q}{m}} .
\end{aligned}
$$

Now dividing Eq. (i) by Eq. (ii), we get

$$
\frac{v_{A}}{v_{B}}=\sqrt{\frac{1}{4}}=\frac{1}{2}
$$

So, $\quad v_{A}: v_{B}=1: 2$
(a)
$\frac{u_{1}}{u_{2}}=\frac{1}{2}$
Accelerations of cathode rays in electric field, $\vec{a}=\frac{e E}{m}$
It is same for both the cathode rays
As displacement, $s=u t+\frac{1}{2} a t^{2}$
So for a given value of a and $t, s \times u$

So, $\frac{s_{1}}{s_{2}}=\frac{u_{1}}{u_{2}}=\frac{1}{2}$
(b)

Here, $\lambda_{0}=200 \mathrm{~nm} ; \lambda=100 \mathrm{~nm}$;
$h c / e=1240 \mathrm{eV} \mathrm{nm}$
maximum KE $=\frac{h c}{\lambda e}-\frac{h c}{\lambda_{0} e}($ in eV)
$=\frac{h c}{e}\left(\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right)$
$=1240\left(\frac{1}{100}-\frac{1}{200}\right)$
$=6.2 \mathrm{eV}$
(c)

For k_{α} emission
transition L shell to k - shell
For k_{β} emission
transition M shell to k - shell
For L_{α} emission
transition M shell to L - shell

$$
\begin{aligned}
& E_{M}-E_{K}=\left(E_{M}-E_{L}\right)+\left(E_{L}-E_{K}\right) \\
& \Rightarrow h f_{2}=h f_{3}+h f_{1} \Rightarrow f_{2}=f_{1}+f_{3}
\end{aligned}
$$

18

19

20
(a)

Number of photons emitted per second
$n=\frac{p}{h v}=\frac{10 \times 10^{3}}{6.6 \times 10^{-34} \times 880 \times 10^{3}}=1.72 \times 10^{31}$
.

$$
\begin{aligned}
& p=\frac{h}{\lambda}=\frac{6.6}{440} \\
& \text { and mass } m= \\
& \text { (a) } \\
& \lambda=\frac{h}{p}=\frac{h}{m v}
\end{aligned}
$$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	B	C	D	C	D	C	C	C	A			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	C	D	B	C	B	C	A	A	A			

