Class : XIIth Date :

Solutions

PRACTICE PROBLEM

Subject : PHYSICS DPP No. : 10

Topic :- Dual nature of radiation and matter

1 (c) Here, $E_1 = E_2$ $n_1hv_1 = n_2hv_2$ $\frac{n_1}{n_2} = \frac{v_2}{v_1}$ So, 2 (a) Energy of photon $E = \frac{hc}{\lambda}$ $\lambda = 5000 \text{ Å} = 5 \times 10^{-7} m$ Given, $E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{5 \times 10^{-7}}$ *:*. $= 3.96 \times 10^{-19} J$ Energy received per second = 10^{-8} Js⁻¹ Number of photon's received per second *.*:. $=\frac{\text{Energy received per second}}{\text{Energy of one photon}}$ $=\frac{10^{-8}}{3.96\times10^{-19}}=2.5\times10^{10}$ 3 (c) $\frac{1}{-mu^2} - eV_0$

$$\Rightarrow \qquad 2^{m\nu_{\text{max}} - e\nu_{0}}$$

$$\Rightarrow \qquad \nu_{\text{max}} = \sqrt{2(\frac{e}{m})V_{0}}$$

$$= \sqrt{2 \times 1.8 \times 10^{11} \times 9}$$

$$= 18 \times 10^{5} \, \text{ms}^{-1}$$

$$= 1.8 \times 10^{6} \, \text{ms}^{-1}$$

4

(c)

(d)

(a)

 \Rightarrow

(b)

$$QE = mg \Rightarrow Q = \frac{mg}{E} \Rightarrow n = \frac{mgd}{Ve}$$
$$\Rightarrow n = \frac{1.8 \times 10^{-14} \times 10 \times 0.9 \times 10^{-2}}{2 \times 10^3 \times 1.6 \times 10^{-19}} = 5$$

5

X-rays are electromagnetic in nature so they remains unaffected in electric and magnetic field

6

$$\lambda_{\min} = \frac{12375}{V} \text{ Å} \Rightarrow V = \frac{12375}{0.4125} = 30 \ kV$$

7

(a)

$$E = \frac{hc}{\lambda} \Rightarrow E \propto \frac{1}{\lambda}$$

$$\Rightarrow \qquad \frac{E'}{E} = \frac{400}{300} = 1.33$$

But $E = eV_s$, V_s being stopping potential. Thus, stopping potential for photoelectrons from a surface becomes approximately 1.0 V greater.

8

Energy possessed by a photon is given by

$$E = hv = \frac{hc}{\lambda}$$

If power of each photon is *P* then energy given out in *t* second is equal to *Pt*. Let the number of photons be *n*, then

-		
	$n = \frac{Pt}{E} = \frac{Pt}{(hc/\lambda)} = \frac{Pt\lambda}{hc}$	
For red light,	$n_R = \frac{Pt\lambda_R}{hc}$	
For violet light,	$n_V = \frac{Pt\lambda_V}{hc}$	
	'n	$rac{n_R}{n_V} = rac{\lambda_R}{\lambda_V}$
As	$\lambda_R > \lambda_V$	
So,	$n_R > n_V$	
(a)		

9

Mosley's law is $f = a(Z - b)^2$

11 (c)

In the absence of electric field (*i.e.* E = 0)

 $mg = 6\pi\eta rv$ $D_1 = 6\pi\eta rv$ 1 mg ...(i) In the presence of Electric field $mg + QE = 6\pi\eta r(2\nu)$ $D_2 = 6\pi\eta r(2v)$ 1 E D₂ QE ...(ii) When electric field to reduced to E/2 $mg + Q(E/2) = 6\pi\eta r(v')$ $D_3=6\pi\eta r(v')$...(iii) After solving (i), (ii) and (iii) We get $v' = \frac{3}{2}v$

13

(c)

Crystal structure is explored through the diffraction of waves having a wavelength comparable with the interatomatic spacing (10^{-10}m) in crystals. Radiation of larger wavelength cannot resolve the details of structure, while radiation of much shorter wavelength is diffracted through inconveniently small angles. Usually diffraction of X-rays is employed in the study of crystal structure as X-rays have wavelength comparable to interatomic spacing.

14 **(c)**

Linear momntum of an electron in *n* th orbit $L = \frac{nh}{2\pi^2}$ for n = 2 then $L = \frac{h}{\pi}$

15 **(d)**

Current

 \Rightarrow

(c)

nt
$$i = \frac{1}{t}$$

 $\frac{n}{t} = \frac{i}{e} = \frac{3.2 \times 10^{-3}}{1.6 \times 10^{-19}} = 2 \times 10^{6}/s$

$$\lambda = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2m_{\alpha}Q_{\alpha}V}}$$

On putting $Q_{\alpha} = 2 \times 1.6 \times 10^{-19}C$

ne

$$m_{\alpha} = 4m_p = 4 \times 1.67 \times 10^{-27} kg \Rightarrow \lambda = \frac{0.101}{\sqrt{V}} \text{\AA}$$
20 (c)

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}} = \frac{m_0}{\sqrt{1 - (0.8c)^2/c^2}} = \frac{5m_0}{3}$$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	C	А	C	C	D	А	A	В	A	С	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	С	C	C	D	С	C	С	В	С	

