DPPP DAILY PRACTICE PROBLEMS									
	ASS : XIth TE : Solutions SUBJECT : CHEMISTRY DPP No. : 5								
Topic :- THE D-AND F-BLOCK ELEMENTS									
1	(b)								
2	Ag salts on strong heating form Ag.								
2	(b) Mond's process involves extraction of Ni.								
	Ni + $4CO \xrightarrow{335K} Ni(CO)_4$ (Volatile);								
0	$Ni(CO)_4 \xrightarrow{450K} Ni + 4CO$								
3	(c) $2Fe_2(SO_4)_3 + 3K_4[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6]_3 + 6K_2SO_4.$								
	$2re_2(30_4)_3 + 3r_4[re(Ch)_6] \rightarrow re_4[re(Ch)_6]_3 + 0r_230_4.$ (Prussian blue)								
4	(c)								
	German silver is an alloy of copper, zinc and nickel. It is used in utensils and resistance								
5	wire.								
5	(b) Due to the formation o <mark>f CuC</mark> O ₃ .Cu(OH) ₂ ; green								
6	(b)								
	It is a reason for the given fact.								
7	(a)								
	$FeSO_4$ is mostly used in manufacture of blue-black ink, as a mordant in dyeing and tanning								
0	industries.								
8	(c) It is a trade name for $CuSO_{4.}5H_{2}O$.								
9	(a)								
	The elements having incomplete <i>d</i> -orbital can show variable oxidation state (because the								
	electrons move the two levels of <i>d</i> itself)								
	\therefore Zn has completely filled <i>d</i> -orbital.								
	\therefore It does not show variable oxidation state. It always show +2 oxidation state.								
11	(b) It is a fact								
12	It is a fact. (b)								
	$Ag_2O \xrightarrow{\Delta} 2Ag + \frac{1}{2}O_2$								

13	(a)
	Calamine $(ZnCO_3)$ is an ore of zinc.
14	(b)
	Haematite (Fe ₂ O ₃) having FeO is first oxidized to Fe_2O_3 and then reduced to Fe by Co.
15	(b)
	MnO ₂ forms amphoteric oxide due to intermediate oxidation state
16	(d)
	Ir does not dissolve in aqua regia as it is much more noble than Au and Pt
17	(d)
	Hg has $+1$ oxidation state in Hg ₂ Cl ₂ .
18	(b)
	$[Co(NH_3)_5Cl]Cl_2$ ionizes to $[Co(NH_3)_5Cl]^{2+}$ and Cl^- . These $2Cl^-$ react with Ag ⁺ to form
	white ppt. of AgCl.
19	(d)
	All are facts.
20	(a)
	$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \rightarrow K_2SO_4 + 2CrO_5 + 5H_2O_5$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	В	В	С	С	В	В	A	С	A	C			
Q.	11	12	13	14	15	16	17	18	19	20			
Α.	В	В	А	В	В	D	D	В	D	A			

