

CLASS: XIth DATE:

**Solutions** 

**SUBJECT: CHEMISTRY** 

DPP No.: 3

## **Topic:-THE D-AND F-BLOCK ELEMENTS**

1 **(b**)

$$HgO \xrightarrow{\Delta} Hg + \frac{1}{2}O_2$$

2 **(a)** 

Cast iron has the highest percentage of carbon. It contains 2 to 4.5 % of carbon along with impurities such as sulphur, silicon, phosphorus etc. It is the least pure form of iron.

3 **(a**)

Argentite is Ag<sub>2</sub>S.

4 **(d)** 

$$2\text{HgS} + 30_2 \rightarrow 2\text{HgO} + \frac{2\text{SO}_2}{2},$$

$$2 \text{HgO} + \text{HgS} \rightarrow 3 \text{Hg} + \text{SO}_2$$

5 **(a)** 

Transuranic elements start after uranium and begin with Np (Neptunium)

6 **(a)** 

All these compounds are less soluble in water and only  $Zn(OH)_2$  is soluble in  $NH_4Cl + NH_4$  OH due to formation of tetramine zinc (II) complex.

$$Zn^{2+} + 4NH_4OH \rightarrow [Zn(NH_3)_4]^{2+} + 2H_2O$$

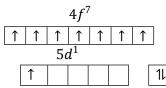
7 **(d)** 

Transition metals can form ionic or covalent compounds and their melting and boiling points are high. Their compounds are generally coloured and they usually exhibit variable valency.

8 **(b)** 

Both KMnO<sub>4</sub> and FeCl<sub>3</sub> are oxidant and thus, no reaction.

9 **(b)** 


Alloy is a homogeneous mixture of two or more metals. Mercury forms amalgams (alloy) with gold, silver and tin. But it does not react with iron or platinum.

10 **(b)** 

Purple of Cassius is the trade name for gold sol. in water.

12 **(d)** Gd(64)

 $[Xe]_{54}$ 



All the electrons of 4f-orbital are unpaired, hence stable.

Thus, Gd(64) has EC as  $[Xe]_{54} 4f^7 5d^1 6s^2$ 

Instead of  $[Xe]_{54} 4f^8 6s^2$ 

13 **(c)** 

The electronic configuration of mercury (80) is  $[Xe]4f^{10}$ ,  $5d^{10}$ ,  $6s^2$ . Its d-subshell is completely filled, thus it prevents the overlapping of d-orbitals (d-d overlapping). Hence, it is liquid metal at room temperature.

14 (c)

Azurite is the ore of copper, its molecular formula is  $Cu(OH)_2.2CuCO_3$ .

15 **(b)** 

$$CrO_4^{2-} + 2H^+ \longrightarrow Cr_2O_7^{2-} + H_2O$$

16 **(d**)

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$$

$$4Zn + 10HNO_3 \rightarrow 4Zn(NO_3)_2 + N_2O + 5H_2O$$

Thus,  $NO_3^-$  ions are reduced to  $N_2O$  whereas in first two reactions  $H^+$  is reduced to  $H_2$ .

17 **(b**)

Siderite — FeCO<sub>3</sub>, calcite (or limestone) — CaCO<sub>3</sub>, silver glance(or argentite) — Ag<sub>2</sub>S, fool's gold (or iron pyrites) — FeS<sub>2</sub>.

18 **(c**)

$$3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$$

19 **(d)** 

In the electrolytic refining of zinc, anode is made up of impure zinc while a strip of pure zinc acts as cathode. An acidified solution of zinc sulphate acts as electrolyte. When electricity is passed, following reactions occur.

At cathode

$$Zn^{2+} + 2e^- \rightarrow Zn$$

pure

At anode

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

impure

| ANSWER-KEY |    |    |    |    |    |    |    |    |    |    |
|------------|----|----|----|----|----|----|----|----|----|----|
| Q.         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| Α.         | В  | A  | A  | D  | A  | A  | D  | В  | В  | В  |
|            |    |    |    |    |    |    |    |    |    |    |
| Q.         | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Α.         | С  | D  | С  | С  | В  | D  | В  | С  | D  | В  |
|            |    |    |    |    |    |    |    |    |    |    |

