

SUBJECT : PHYSICS DPP NO.: 5

l'opic

- 1. In a copper voltmeter experiment, current is decreased to one-fourth of the initial value but is passed for four times the earlier duration. Amount of copper deposited will be b) One-fourth the previous value
 - a) Same
- d) $\frac{1}{16}$ th the previous value
- c) Four times the previous value
- 2. A strip of copper and another of germanium are cooled from room temperature to 80 K. The resistance of
 - a) Each of these increases
 - b) Each of these decreases
 - c) Copper strip increases and that of germanium decreases
 - d)Copper strip decreases and that of germanium increases
- 3. The resistance of the following circuit figure between *A* and *B* is

- 4. The amount of charge *Q* passed in time *t* through a cross-section of a wire is $Q = 5t^2 + 3t + 3t^2 + 3t^2$ 1. The value of current at time t = 5 s is
 - a) 9A b)49A c) 53A d) None of these

5. Silver and copper voltameter are connected in parallel with a battery of *e*.m.f. 12 *V*. In 30 *minutes*, 1*g* of silver and 1.8*g* of copper are liberated. The power supplied by the battery is

$$(Z_{Cu} = 6.6 \times 10^{-4} g/C \text{ and } Z_{Ag} = 11.2 \times 10^{-4} g/C)$$

a) 24.13 J/sec b) 2.413 J/sec c) 0.2413 J/sec d) 2413 J/sec

6. In a copper voltmeter, the mass deposited in 30 s is *m* gram. If the current-time graph is as shown in figure, the electrochemical equivalent of copper, in gC^{-1} is

7. The electron in a hydrogen atom circles around the proton in 1.5941×10^{-18} s. The equivalent current due to motion of the electrons is

8. The effective resistance between points *P* and *Q* of the electrical circuit shown in the figure.

- 9. In a thermo-couple, one junction which is at 0°C and the other at t° C the emf is given by E = a $t^{2} - bt^{2}$. The neutral temperature is given by a) a/b b) 2a/3b c) 3a/2b d) b/2a
- 10. In the arrangement shown in figure, the current through 5 Ω resistor is

2 Ω 12V	$\leq 5 \Omega$ 2Ω 12V		
a) 2A	b)Zero	c) $\frac{12}{7}$ A	d) 1A

11. A straight conductor of uniform cross-section carries a current *i*, If *s* is the specific charge of an electron, the momentum of all the free electrons per unit length of the conductor, due to their drift velocity only is

a) is b) $\sqrt{i/s}$ c) i/s d) $(i/s)^2$

12. When a copper voltmeter is connected with a battery of emf 12V, 2 g of copper is deposited in 30 min. If the same voltmeter is connected across 6 V battery, the mass of copper deposited in 45 min would be

```
a) 1 g b) 1.5 g c) 2 g d) 2.5 g
```

13.	A resistor <i>R</i> and Across the capa bulk light up 5 a) $1.7 \times 10^5 \Omega$	12μ F capacitor in citor is a neon bu s alter the switch b) 2.7×2	series is co ilb that light has been cl 10 ⁶ Ω	nnected through a s up at 120 V. Calo osed ($\log_{10} 2.5 = 0$ c) $3.3 \times 10^7 \Omega$	switch to 200 V direct supplies. culate the value of <i>R</i> to make the $(.4)$ d) $1.3 \times 10^4 \Omega$		
14	4. In above question, if length is doubled, the drift velocity						
1.1.	a) Is doubled	b) Is halv	ed	c) Remains sam	e d) Becomes zero		
15.	15. Out of five resistances of resistance $R \Omega$ each 3 are connected in parallel and are joined to the rest 2 in series. Find the resultant resistance						
	a) $\left(\frac{3}{7}\right)R \Omega$	b) $\left(\frac{7}{3}\right)R \Omega$		c) $\left(\frac{7}{8}\right)R \Omega$	d) $\left(\frac{8}{7}\right)R \Omega$		
16.	If the resistivity a) $\rho' > \rho$ c) $\rho' = \rho$	of an alloy is $ ho'$ a	and that of co	onstituent metal is b) ρ'< ρ d) There is no s	ho then imple relation between $ ho$ and $ ho'$		
17. The mass of a substance liberated when a charge $'q'$ flows through an electrolyte is proportional to							
	a) q	b) 1/q c)	q^2	d) $1/q^2$			
18.	The resistance of	of a discharge tub	e is				
	a) Ohmic	b) Non- <i>o</i> h <i>mic</i>	c) Bo	th (a) and (b)	d) Zero		
19.	If the resistance coefficient of re	e of a condu <mark>ctor is</mark> sistance of <mark>the m</mark>	s 5Ω at 50°C aterial is	and 7Ω at 100°C t	nen the mean temperature		
	a) 0.008/°C	b) 0006/°C	c) 0.0	04/°C (l) 0.001/°C		

20. The resistance of a galvanometer coil is *R*, then the shunt resistance required to convert it into a ammeter of range 4times, will be a) 4R b) R/3 c) R/4 d) R/5