CLASS : XIITH
DATE :

Topic :- Current Electricity

1
(b)

By using Kirchhoff's junction law as shown below

We get $i=8 A$
2
(a)
$I=\frac{d q}{d t}=3 t^{2}+2 t+5$
$\therefore d q=\left(3 t^{2}+2 t+5\right) d t$
$\therefore q=\int_{t=0}^{t=2}\left(3 t^{2}+2 t+5\right) d t$
$=\frac{3 t^{3}}{3}+\frac{2 t^{2}}{2}+\left.5 t\right|_{0} ^{2}=t^{3}+t^{2}+\left.5 t\right|_{0} ^{2}=22 C$

3
(a)
$\frac{i}{i_{g}}=\frac{G+S}{S} \Rightarrow \frac{i_{g}}{i}=\frac{S}{G+S}=\frac{2.5}{27.5}=\frac{1}{11}$

4
(b)

Current flowing through 2Ω resistance is $3 A$, so P.D. across it is $3 \times 2=6 \mathrm{~V}$
Current through the bottom line $=\frac{6}{1+5}=1 \mathrm{~A}$
\therefore Power dissipated in 5Ω resistance is
$P=i^{2} R=(1)^{2} \times 5=5 W$

(a)

We know that thermoelectric power
$S=\frac{d E}{d T}$
Given, $E=K\left(T-T_{r}\right)\left[T_{0}-\frac{1}{2}\left(T+T_{r}\right)\right]$
By differentiating the above equation w.r.t. T and putting $T=\frac{1}{2} T_{0}$, we get $S=\frac{1}{2} k T_{0}$
6 (d)
Three resistances are in parallel,
$\therefore \frac{1}{R^{\prime}}=\frac{1}{R}+\frac{1}{R}+\frac{1}{R}=\frac{3}{R}$
The equivalent resistance
$R^{\prime}=\frac{R}{3} \Omega=\frac{6}{3}=2 \Omega$
(a)

Internal resistance of the cell
$r=\left[\frac{E}{V}-1\right] R$
$r=\left[\frac{1.5}{1.4}-1\right] 14=1 \Omega$
(c)

From Kirchhoff's second law
$V=\sum i r \quad$ (for closed mesh)
Where V is potential difference, i the current and r the resistance.
$\therefore E+E=I r+I r=2 I r$
or $\quad I=\frac{E}{r}$
$V_{x}-V_{y}=E$ - Ir
Putting the value of I from Eq (i), we get
$V_{x}-V_{y}=E-\frac{E}{r} \times V=0$

10
(c)

Here, $\frac{P}{Q}=\frac{2}{3}$
we know
$\frac{P}{Q}=\frac{l}{100-l}$
$\Rightarrow \frac{2}{3}=\frac{l}{100-l}$
$\Rightarrow l=40 \mathrm{~cm}$
(c)
$v_{d}=\frac{I}{n A e}=\frac{20}{10^{29} \times 10^{-6} \times 1.6 \times 10^{-19}}=1.25 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
(b)

Total resistance
Or $R=20+40$ $R=60 \Omega$
Given $G=15 \mathrm{~V}$
Current $I=\frac{V}{R}=\frac{15}{60}$

$$
I=0.25 A
$$

Potential gradient $=\frac{V}{l}$
$=\frac{20 \times 0.25}{10}=0.5 \mathrm{Vm}^{-1}$
PD across 240 cm
$E=0.5 \times 2.4$
$E=1.2 \mathrm{~V}$
(a)

Equivalent resistance of the given network
$R_{\text {eq }}=75 \Omega$
\therefore Total current through battery,
$i=\frac{3}{75}$
$i_{1}=i_{2}=\frac{3}{75 \times 2}=\frac{3}{150}$

Current through resistance

$$
\begin{aligned}
R_{4} & =\frac{3}{150} \times \frac{60}{(30+60)} \\
& =\frac{3}{150} \times \frac{60}{90} \\
& =\frac{2}{150} \mathrm{~A} \\
V_{4} & =i_{4} \times R_{4} \\
& =\frac{2}{150} \times 30 \\
& =\frac{2}{5}=0.4 \mathrm{volt}
\end{aligned}
$$

(c)

Current through a conductor is constant at even cross-section of the conductor
(c)

Mass deposited $=$ density \times volume of the metal
$m=p \times A \times X$
Hence from Faraday's first law $m=$ Zit
So from equation (i) and (ii)
Zit $=\rho \times A x \Rightarrow x=\frac{\text { Zit }}{\rho A}$
$=\frac{3.04 \times 10^{-4} \times 10^{-3} \times 1 \times 3600}{9000 \times 0.05}=2.4 \times 10^{-6} \mathrm{~m}=2.4 \mu \mathrm{~m}$
(c)

The given circuit can be simplified as follows

18
(b)
$R \propto l^{2} \Rightarrow$ If l doubled then R becomes 4 times
(c)

Ammeter is used to measure the current through the circuit
(b)
$i=\frac{E}{r+R} \Rightarrow P=i^{2} R \Rightarrow P=\frac{E^{2} R}{(r+R)^{2}}$
Power is maximum when $r=R \Rightarrow P_{\text {max }}=E^{2} / 4 r$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	A	A	B	A	D	B	A	C	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	C	B	A	C	C	C	C	B	C	B			

