CLASS : XIITH DATE :

(b)

Solutions

SUBJECT : PHYSICS DPP NO. : 8

Topic :- Current Electricity

1

By using Kirchhoff's junction law as shown below

3

2

$$\frac{i}{i_g} = \frac{G+S}{S} \Rightarrow \frac{i_g}{i} = \frac{S}{G+S} = \frac{2.5}{27.5} = \frac{1}{11}$$

4 **(b)**

Current flowing through 2 Ω resistance is 3*A*, so P.D. across it is $3 \times 2 = 6V$ Current through the bottom line $=\frac{6}{1+5} = 1A$ \therefore Power dissipated in 5 Ω resistance is $P = i^2 R = (1)^2 \times 5 = 5W$

5

(a)

(d)

(a)

We know that thermoelectric power

$$S = \frac{dE}{dT}$$

Given, $E = K(T - T_r) [T_0 - \frac{1}{2}(T + T_r)]$

By differentiating the above equation w.r.t. *T* and putting $T = \frac{1}{2}T_0$, we get $S = \frac{1}{2}kT_0$

6

Three resistances are in parallel,

 $\therefore \ \frac{1}{R'} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} = \frac{3}{R}$

The equivalent resistance

$$R' = \frac{R}{3}\Omega = \frac{6}{3} = 2\Omega$$

8

Internal resistance of the cell [E]

$$r = \left[\frac{L}{V} - 1\right]R$$
$$r = \left[\frac{1.5}{1.4} - 1\right]14 = 1\Omega$$

റ		
ч		
,		

(c) From Kirchhoff's second law $V = \sum ir$ (for closed mesh) Where V is potential difference, *i* the current and *r* the resistance. $\therefore E + E = Ir + Ir = 2Ir$ or $I = \frac{E}{r}$ (*i*) $V_x - V_y = E - Ir$ Putting the value of *I* from Eq (i), we get $V_x - V_y = E - \frac{E}{r} \times V = 0$

(c)
Here,
$$\frac{P}{Q} = \frac{2}{3}$$

we know
 $\frac{P}{Q} = \frac{l}{100 - l}$
 $\Rightarrow \frac{2}{3} = \frac{l}{100 - l}$
 $\Rightarrow l = 40 \text{ cm}$

11

10

(c)
$$v_d = \frac{I}{nAe} = \frac{20}{10^{29} \times 10^{-6} \times 1.6 \times 10^{-19}} = 1.25 \times 10^{-3} \text{m/s}$$

12

(b)
Total resistance
Or
$$R = 20 + 40$$

 $R = 60\Omega$
Given $G=15V$
Current $I = \frac{V}{R} = \frac{15}{60}$
 $I = 0.25A$
Potential gradient $= \frac{V}{l}$
 $= \frac{20 \times 0.25}{10} = 0.5Vm^{-1}$
PD across 240 cm
 $E = 0.5 \times 2.4$
 $E = 1.2V$

13

(a) Equivalent resistance of the given network $R_{eq} = 75\Omega$ \therefore Total current through battery, $i = \frac{3}{75}$

$$i_1 = i_2 = \frac{3}{75 \times 2} = \frac{3}{150}$$

Current through resistance

$$R_{4} = \frac{3}{150} \times \frac{60}{(30+60)}$$

= $\frac{3}{150} \times \frac{60}{90}$
= $\frac{2}{150} A$
 $V_{4} = i_{4} \times R_{4}$
= $\frac{2}{150} \times 30$
= $\frac{2}{5} = 0.4$ volt

14 **(c)**

Current through a conductor is constant at even cross-section of the conductor

15

(c) Mass deposited = density × volume of the metal $m = p \times A \times X$...(i) Hence from Faraday's first law m = Zit ...(ii) So from equation (i) and (ii) $Zit = \rho \times Ax \Rightarrow x = \frac{Zit}{\rho A}$ $= \frac{3.04 \times 10^{-4} \times 10^{-3} \times 1 \times 3600}{9000 \times 0.05} = 2.4 \times 10^{-6}m = 2.4 \mu m$

17

(c)

The given circuit can be simplified as follows

18

(b)

(b)

 $R \propto l^2 \Rightarrow$ If *l* doubled then *R* becomes 4 times

19 **(c)**

Ammeter is used to measure the current through the circuit

20

$$i = \frac{E}{r+R} \Rightarrow P = i^2 R \Rightarrow P = \frac{E^2 R}{(r+R)^2}$$

Power is maximum when $r = R \Rightarrow P_{\text{max}} = E^2/4r$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	В	A	А	В	А	D	В	А	С	С	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	С	В	A	С	С	С	С	В	С	В	

