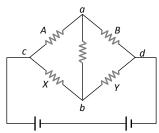


CLASS : XIITH SUBJECT : PHYSICS DATE : DPP NO. : 7

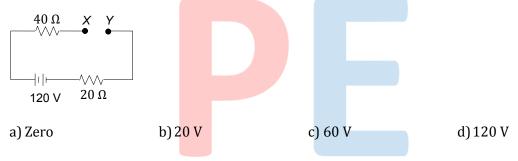
Topic :- Current Electricity


1.	Two identical conductors maintained at same temperatures are given potential differences in the ratio $1:2$. Then the ratio of their drift velocities is			
	a) 1:2	b)3:2	c) 1:1	d) $1:2^{1/2}$
2.	A 100 W bulb produces an electric field of 2.9 V/m at a point 3 m away. If the bulb is replaced by 400 W bulb without disturbing other conditions, then the electric field produced at the same point is			
	a) 2.9 <i>V/m</i>	b) $3.5 V/m$	c) 5 <i>V/m</i>	d) 5.8 <i>V/m</i>
	a) 2.7 V / III	0)3.3 V / III	c) 5 V / III	u) 5.0 v / III
3.	The neutral temperature $t_n = 285^{\circ}\text{C}$ is constant for a Cu-Fe thermocouple. When the cold junction is at 0°C, the value of inversion temperature is $t_i = 570^{\circ}\text{C}$ but if the cold junction is at 10°C, the inversion temperature (t_i) will be			
	a) 550°C	b) 560°C	c) 570°C	d)580°C
	a) 330 C	b) 300 C	C) 370 C	u) 500 C
4.	When a battery connected across a resistor of 16 Ω , the voltage across the resistor is 12 V. When the same battery is connected across a resistor of 10 Ω , voltage across it is 11V. The internal resistance of the battery (in ohm) is			
			25	20
	a) $\frac{10}{7}$	b) $\frac{20}{7}$	c) $\frac{25}{7}$	d) $\frac{30}{7}$
5.	-	= =	mount of chlorine obtai	s used. (Electro chemical ned in one minute will be d) 1.7616 kg

6. *V* - *i* graphs for parallel and series combination of two identical resistors are as shown in figure. Which graph represents parallel combination

- a) A
- b) B
- c) A and B both
- Neither A nor B
- 7. As the temperature rises the resistance offered by metal
 - a) Increase
- b) Decrease
- c) Remains same
- d) None of these
- 8. A wire 100cm long and 2.0 mm diameter has a resistance of 0.7 ohm, the electrical resistivity of the material is
 - a) $4.4 \times 10^{-6} \text{ oh } m \times m$
 - c) $1.1 \times 10^{-6} \text{ oh } m \times m$

- b) $2.2 \times 10^{-6} ohm \times m$
- d) $0.22 \times 10^{-6} \, ohm \times m$
- 9. In the Wheatstone's bridge (shown in figure) X = Y and A > B. The direction of the current between ab will be



- a) From a to b
- c) From b to a through c

- b) From b to a
- d) From a to b through c
- 10. The chemical equivalent of silver is 108. If the current in a silver voltmeter is 2 amp, the time required to deposit 27 *grams* of silver will be
 - a) 8.57 hrs
- b) 6.70 hrs
- c) 3.35 hrs
- d) 12.50 hrs
- 11. By increasing the temperature, the specific resistance of a conductor and a semiconductor
- a) Increases for both b) Decreases for both c) Increases, decreases d) Decreases, increases
- 12. Two electric bulbs whose resistances are in the ratio of 1:2 are connected in parallel to a constant voltage source. The powers dissipated in them have the ratio
- b)1:1
- c) 2:1
- d)1:4
- 13. Two cells of same emf E but of different internal resistances r_1 and r_2 are connected in series

with an external resistance R. The potential drop across the first cell is found to be zero. The external resistance R is

- a) $r_1 + r_2$
- b) r_1 r_2
- c) r_2 r_1
- d) r_1r_2
- 14. A thermocouple is made from two metals, Antimony and Bismuth. If one junction of the couple is kept hot and the other is kept cold, then, an electric current will
 - a) Flow from Antimony to Bismuth at the hot junction
 - b) Flow from Bismuth to Antimony at the cold junction
 - c) Not flow through the thermocouple
 - d) Flow from Antimony to Bismuth at the cold junction
- 15. The resistivity of a wire
 - a) Increase with the length of the wire
 - b) Decreases with the area of cross-section
 - c) Decreases with the length and increases with the cross-section of wire
 - d) None of the above statement is correct
- 16. In the circuit shown figure potential difference between *X* and *Y* will be

- 17. Heat produced (cals) in a resistance R when a current I amperes flows through it for t seconds is given by the expression
 - a) $\frac{I^2Rt}{4.2}$
- b) $\frac{IR^2t}{4.2}$
- c) $\frac{4.2IR}{t^2}$
- $d) \frac{IRt^2}{4.2}$
- 18. Kirchoff's second law for the analysis of circuit is based on
 - a) Conversion of charge

- b) Conversion of energy
- c) Conversion of both charge and energy
- d) Conversion of momentum of electron
- 19. A constant voltage is applied between the two ends of a uniform metallic wire. Some heat is developed in it. The heat developed is doubled if
 - a) Both the length and radius of wire are halved b)Both the length and radius of wire are doubled
 - c) The radius of wire is doubled
- d) The length of wire is doubled
- 20. If an increase in length of copper wire is 0.5% due to stretching, the percentage increase in its

resistance will be a) 0.1%

b) 0.2%

c) 1%

d)2%

