CLASS : XIITH
DATE :
Solutions
SUBJECT : PHYSICS
DPP NO. : 5

Topic :- Current Electricity

1
(a)

In the first case, $Z i t=m$
In the second case, $Z \times \frac{i}{4} \times 4 t=m$
(c)
$i=\frac{d Q}{d t}=\frac{d}{d t}\left(5 t^{2}+3 t+1\right)=10 t+3$
When $t=5 \mathrm{~s}, i=10 \times 5+3=53 \mathrm{~A}$
(a)

The current taken by the silver voltameter
$I_{1}=\frac{n}{Z t}=\frac{1}{11.2 \times 10^{-4} \times 30 \times 60}=0.496 \mathrm{~A}$
and by copper voltameter
$I_{2}=\frac{1.8}{6.6 \times 10^{-4} \times 30 \times 60}=1.515 \mathrm{~A}$
The current $I=\left(I_{1}+I_{2}\right)=2.011 \mathrm{~A}$

Power $P=I V=2.011 \times 12=24.132 \mathrm{~J} / \mathrm{sec}$
(c)

Average current
$i=\frac{50+100+50}{3}=\frac{200}{3} \mathrm{~mA}$
$z=\frac{m}{i t}=\frac{3 m}{200 \times 10^{-3} \times 30}=\frac{m}{2}$
(c)

The equivalent current due to motion of electrons is given by

$$
\begin{aligned}
I & =\frac{e}{t}=\frac{1.6 \times 10^{-19}}{1.594 \times 10^{-18}} \\
& =1.0037 \times 10^{-1} \\
& =100.37 \times 10^{-3} \mathrm{~A} \\
& =100.37 \mathrm{~mA}
\end{aligned}
$$

(a)

In the circuit arrangement $P S T Q$ is a balanced Wheatstone bridge, hence resistance $2 R$ joined in arm $A B$ be omitted. Similarly, resistance $2 R$ joined in arm $B C$ may also be omitted.

$\therefore \frac{1}{R_{\mathrm{eq}}}=\frac{1}{4 R}+\frac{1}{2 r}+\frac{1}{4 R}=\frac{\mu+2 R+\mu}{4 \mu R}=\frac{(R+r)}{2 R r}$
$\Rightarrow R_{\mathrm{eq}}=\frac{2 R r}{R+r}$
(b)
$\frac{d T}{d t}=\frac{d}{d t}\left(a t^{2}-b t^{3}\right)=2 a t-3 b t^{2}$
When $t=t_{n}\left(i e\right.$, neutral temperature), $\frac{d E}{d t}=0$
$\therefore 0=2 a t_{n}-3 b t_{n}^{2}$ or $t_{n}=\frac{2 a}{3 b}$.
(a)

The circuit may be redrawn as shown in the adjacent figure
Here $E_{\text {eq }}=12 V, r_{\text {eq }}=\frac{2 \times 2}{2+2}=1 \Omega$
$i=\frac{E_{\mathrm{eq}}}{R+r_{\mathrm{eq}}}=\frac{12}{5+1}=\frac{12}{6}=2 \Omega$

11

12
(b)

As $m=z l t=z\left(\frac{V}{R}\right) t$ ie, $m \propto V t$
$\therefore \frac{m_{2}}{m_{1}}=\frac{V_{2} t_{2}}{V_{1} t_{1}}$
or $m_{2}=\frac{V_{2} t_{2}}{V_{1} t_{2}} \times m_{1}=\frac{6 \times 45 \times 2}{12 \times 30}=1.5 \mathrm{~g}$.
(c)
$i=n A e v_{d}$
or $v_{d}=\frac{i}{n A e}$
$=(N m) v_{d}=n A m \times \frac{i}{n A e}=\frac{i}{(e / m)}=\frac{i}{s}$
(a)

Total number of free electrons in the unit length of conductor, $N=n A \times 1$.
Total linear momentum of all free electrons per unit length

Neon bulb is filled with gas, so the resistance is infinite; hence no current flows through it.

Now, $\quad V_{c}=E\left(1-e^{-t / R C}\right)$
$\Rightarrow \quad 120=200\left(1-e^{-t / R C}\right)$
$\Rightarrow e^{-t / R C}=\frac{2}{5}$
$\Rightarrow \quad t=R C \ln 2.5$

$$
\begin{aligned}
\Rightarrow \quad R & =\frac{t}{C \ln 2.5}=\frac{5}{2.303 \times 2 \times 10^{6} \log 2.5} \\
& =2.7 \times 10^{6} \Omega
\end{aligned}
$$

(b)
$v_{d} \propto 1 / l$. Therefore, drift velocity is halued
(b)

$$
\frac{1}{R_{P}}=\frac{1}{R}+\frac{1}{R}+\frac{1}{R}=\frac{3}{R}
$$

$\Rightarrow R_{P}=\frac{R}{3} \Omega$
$\Rightarrow R_{S}=R+R=2 R \Omega$
$\Rightarrow R_{\text {net }}=R_{P}+R_{S}=2 R+\frac{R}{3}=\frac{7 R}{3} \Omega$
(a)

The resistivity of metal increases when it is converted into an alloy
$\therefore \rho^{\prime}>\rho$
(b)

This is because of secondary ionisation which is possible in the gas filled in it
(a)

Using $R_{T_{2}}=R_{T_{1}}\left[1+\alpha\left(T_{2}-T_{1}\right)\right]$
$\Rightarrow R_{100}=R_{50}[1+\alpha(100-50)]$
$\Rightarrow 7=5[1+(\alpha \times 50)] \Rightarrow \alpha=\frac{(7-5)}{250}=0.008 /{ }^{\circ} \mathrm{C}$
(b)

Ammeter is made by connecting a low resistance shunt S in parallel with galvanometer G. since G and S are in parallel, the potential difference across them is same.

$i_{g} \times G=\left(i-i_{g}\right) \times S$
Given, $G=R, i=4 i_{g}$
$S=\frac{i_{g}}{4 i_{g}-i_{g}} \times R=\frac{i_{g}}{3 i_{g}} \times R=\frac{R}{3}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	A	D	A	C	A	C	C	A	B	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	B	A	B	B	A	A	B	A	B	

