CLASS : XIITH DATE : DPPP DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : PHYSICS DPP NO. : 5

Topic :- Current Electricity

1 (a)

In the first case, Zit = m

In the second case, $Z \times \frac{i}{4} \times 4t = m$

2 (d)

For conductors, resistance \propto Temperature and for semiconductor, resistance \propto

1 Temperature

3 (a)

Since resistance connected in arms *CE*, *ED*, *CF* and *FD* will form a balanced Wheatstone bridge, therefore, the resistance of arm *EF* becomes ineffective. Now resistance of arm *CED* or *CFD* = $2 + 2 = 4\Omega$. Effective resistance of these two parallel arm $= \frac{4 \times 4}{4 + 4} = 2\Omega$

Now resistance of arm $ACDB = 2 + 2 + 2 = 6\Omega$, is in parallel with resistance arm $AB = 2\Omega$. Thus, effective resistance between *A* and *B*

$$=\frac{6\times 2}{6+2}=\frac{3}{2}\Omega$$

4

(c) $i = \frac{dQ}{dt} = \frac{d}{dt}(5t^2 + 3t + 1) = 10t + 3$

When t = 5s, $i = 10 \times 5 + 3 = 53 A$

(a)

5

The current taken by the silver voltameter

$$I_{1} = \frac{n}{Zt} = \frac{1}{11.2 \times 10^{-4} \times 30 \times 60} = 0.496 A$$

and by copper voltameter
$$I_{2} = \frac{1.8}{6.6 \times 10^{-4} \times 30 \times 60} = 1.515 A$$

The current $I = (I_{1} + I_{2}) = 2.011 A$

Power $P = IV = 2.011 \times 12 = 24.132 J/sec$

6

(c) Average current $i = \frac{50 + 100 + 50}{3} = \frac{200}{3} \text{mA}$ $z = \frac{m}{it} = \frac{3m}{200 \times 10^{-3} \times 30} = \frac{m}{2}$

7

(c)

(a)

The equivalent current due to motion of electrons is given by

$$I = \frac{e}{t} = \frac{1.6 \times 10^{-19}}{1.594 \times 10^{-18}}$$
$$= 1.0037 \times 10^{-1}$$
$$= 100.37 \times 10^{-3}A$$
$$= 100.37mA$$

8

In the circuit arrangement PSTQ is a balanced Wheatstone bridge, hence resistance 2R joined in arm AB be omitted. Similarly, resistance 2R joined in arm BC may also be omitted.

$$S = \frac{A}{2R} + \frac{A}{$$

10

(a)

9

The circuit may be redrawn as shown in the adjacent figure

Here
$$E_{eq} = 12V, r_{eq} = \frac{2 \times 2}{2 + 2} = 1\Omega$$

$$i = \frac{E_{eq}}{R + r_{eq}} = \frac{12}{5 + 1} = \frac{12}{6} = 2\Omega$$

$$5 \Omega \stackrel{+}{\leq} 2 \Omega \stackrel{+}{12 \vee 2 \Omega} \stackrel{+}{12 \vee 2 \Omega} 12 \vee$$

11

 $i = nAev_d$

(c)

or
$$v_d = \frac{i}{nAe}$$

Total number of free electrons in the unit length of conductor, $N = nA \times 1$.

Total linear momentum of all free electrons per unit length

$$= (Nm)v_d = nAm \times \frac{i}{nAe} = \frac{i}{(e/m)} = \frac{i}{s}$$

12

(b) As $m = z l t = z \left(\frac{V}{R} \right) t$ ie, $m \propto V t$ $\therefore \frac{m_2}{m_1} = \frac{V_2 t_2}{V_1 t_1}$ or $m_2 = \frac{V_2 t_2}{V_1 t_2} \times m_1 = \frac{6 \times 45 \times 2}{12 \times 30} = 1.5g.$ (a)

13

Neon bulb is filled with gas, so the resistance is infinite; hence no current flows through it.

Now,
$$V_c = E(1 - e^{-t/RC})$$

$$\Rightarrow \quad 120 = 200(1 - e^{-t/RC})$$

$$\Rightarrow e^{-t/RC} = \frac{2}{5}$$

$$\Rightarrow$$
 $t = RC \ln 2.5$

$$\Rightarrow \qquad R = \frac{t}{C \ln 2.5} = \frac{5}{2.303 \times 2 \times 10^6 \log 2.5}$$
$$= 2.7 \times 10^6 \,\Omega$$

14 **(b)**

 $v_d \propto 1/l$. Therefore, drift velocity is halued

(b)

$$\frac{1}{R_{P}} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} = \frac{3}{R}$$

$$R_{P} = \frac{R}{3}\Omega$$

$$R_{R} = R + R = 2R\Omega$$

$$R_{R} = R_{P} + R_{S} = 2R + \frac{R}{3} = \frac{7R}{3}\Omega$$

16 **(a)**

The resistivity of metal increases when it is converted into an alloy $\therefore \rho' > \rho$

18

(b)

This is because of secondary ionisation which is possible in the gas filled in it

19 **(a)**

Using
$$R_{T_2} = R_{T_1}[1 + \alpha(T_2 - T_1)]$$

⇒ $R_{100} = R_{50}[1 + \alpha(100 - 50)]$
⇒ $7 = 5[1 + (\alpha \times 50)]$ ⇒ $\alpha = \frac{(7 - 5)}{250} = 0.008/°C$

20 **(b)**

Ammeter is made by connecting a low resistance shunt *S* in parallel with galvanometer *G*. since *G* and *S* are in parallel, the potential difference across them is same.

$$i_g \times G = (i - i_g) \times S$$

Given, $G = R$, $i = 4i_g$
 $S = \frac{i_g}{4i_g \cdot i_g} \times R = \frac{i_g}{3i_g} \times R = \frac{R}{3}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	А	D	A	С	А	С	С	А	В	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	В	Α	В	В	А	А	В	A	В

