CLASS : XIITH
DATE:

Topic:- Current Electricity

1
(c)

For semiconductors, resistance decreases on increasing the temperature

2
(b)

Given circuit is equivalent to

So the equivalent resistance between points A and B is equal to
$R=\frac{6 \times 3}{6+3}=2 \Omega$

3
(d)

Energy consumed in $k W \mathrm{~h}=\frac{\text { watt } \times \text { hour }}{1000}$
\Rightarrow For 30 days, $P=\frac{10 \times 50 \times 10}{1000} \times 30=150 \mathrm{kWh}$

4
(a)

Ammeter is always connected in series and Voltmeter is always connected in parallel

5
(c)

It $=\frac{m}{z}=\frac{5 \times 10^{-3}}{3.387 \times 10^{-7}}$
$=\frac{5 \times 10^{4}}{3.387 \times 60 \times 60} \mathrm{Ah}=4.1 \mathrm{Ah}$
(d)
$\frac{R_{1}}{R_{2}}=\frac{\left(1+\alpha t_{1}\right)}{\left(1+\alpha t_{2}\right)} \Rightarrow \frac{5}{6}=\frac{(1+\alpha \times 50)}{(1+\alpha \times 100)} \Rightarrow \alpha=\frac{1}{200} \operatorname{per}^{\circ} \mathrm{C}$
Again by $R_{t}=R_{0}(1+\alpha t)$
$\Rightarrow 5=R_{0}\left(1+\frac{1}{200} \times 50\right) \Rightarrow R_{0}=4 \Omega$

7

8
(a)

Chemical equivalent of gold $=\frac{197.1}{3}=65.7$
Gold to be deposited $=\frac{200 \times 5}{100}=10 \mathrm{~g}$
Electrochemical equivalent of gold

$$
z_{2}=\frac{W_{2}}{W_{1}} z_{1} z_{2}=\frac{65.7}{1.008} \times 0.1044 \times 10^{-4} \mathrm{gC}^{-1}
$$

Also $m=z l t, t=\frac{m}{z l}$
$\Rightarrow=\frac{10}{\left(\frac{65.7}{1.008} \times 0.1044 \times 10^{-4} \times 2\right)}$
$=7347.9 \mathrm{~s}$
9
(d)

Given, the resistance of wire $\mathrm{R}=12 \Omega$. The wire is bent in square form
$\begin{cases}3 \Omega \\ 3 \Omega & 3 \Omega\end{cases}$
$R_{1}=3+3=6 \Omega$
$R_{2}=3+3=6 \Omega$

$$
R_{1}=6 \Omega
$$

A。

$$
R_{2}=6 \Omega
$$

$\frac{1}{R^{\prime}}=\frac{1}{6}+\frac{1}{6}$
or $\frac{1}{R^{\prime}}=\frac{2}{6}$
or $R^{\prime}=3 \Omega$
$I^{2} \times 6=60$ or $I=\sqrt{10} \mathrm{~A}$

Current through upper branch $=2 \sqrt{10} \mathrm{~A}$. Heat produced per second $3 \Omega=$ $\left(2 \sqrt{10}^{2} \times 3 \mathrm{cal}=120 \mathrm{cal}\right.$.

10

11
(c)

Hence $R_{e q}=\frac{2 R}{3}$ [Since it's a balanced Wheatstone bridge]
(c)
$v_{d}=\frac{I}{n A e}=\frac{20}{10^{29} \times 10^{-6} \times 1.6 \times 10^{-19}}=1.25 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
(b)

Let R be the resistance of each lamp and V be the voltage supplied to the circuit. Current in the circuit is
$I_{1}=\frac{V}{R+\frac{R \times R}{R+R}}=\frac{2 V}{3 R}$
Current flowing through B or C,
$I_{2}=\frac{I_{1}}{2}=\frac{1}{2}\left(\frac{2 V}{3 R}\right)=\frac{V}{3 R}$
When C is fused, the whole current flows through A and B.
Then, $I_{2}^{\prime}=V / 2 R$
So current through A decreases and current through B increases. Therefore brilliance of A decreases and that of B increase.
(c)

As for an electric appliance $R=\frac{V^{2}}{P}$.
For first bulb, its resistance
$R_{2}=\frac{V^{2}}{P_{1}}=\frac{250 \times 250}{100}=625 \Omega$
For second bulb, its resistance

$$
\begin{aligned}
R_{2} & =\frac{V_{2}^{2}}{P_{2}}=\frac{200 \times 200}{100} \\
& =400 \Omega
\end{aligned}
$$

Now, in series potential divides in proportion to resistance.

So, $V_{2}=\frac{R_{2}}{\left(R_{1}+R_{2}\right)} V$
Where V is supply voltage.
\therefore Potential drop across bulb B_{2}.

$$
\begin{aligned}
V_{2} & =\frac{400}{(625+400)} \times 250 \\
& =97.56 \mathrm{~V} \\
& =98 \mathrm{~V}
\end{aligned}
$$

(d)

Equivalent weight of aluminium $=\frac{27}{3}=9$
So 1 faraday $=96500 C$ are required to liberate 9 gm of Al
18 (a)
In the following circuit potential difference between

C and B is $V_{C}-V_{B}=1 \times 16=16 \quad$...(ii)
On solving equations (i) and (ii) we get $V_{A}-V_{B}=12 \mathrm{~V}$

19 (a)
Equivalent resistance $R=\frac{9}{9}=1 \Omega$

Current $i=\frac{9}{1}=9 A$
Current passing through the ammeter $=5 A$
20 (b)
Power, $P=\frac{V^{2}}{R}$
$R=\frac{V^{2}}{P}=\frac{(60)^{2}}{160}=22.5 \Omega$
Now, according to Ohm's law
$\mathrm{V}=\mathrm{IR}$
$\therefore I=\frac{60}{22.5}$

$$
\begin{aligned}
& \Rightarrow I=2.6 A \\
& \text { Here, } t=60 \mathrm{~s} \\
& \text { As } \quad I=\frac{n e}{t} \\
& \Rightarrow n=\frac{I \times t}{e} \\
& \Rightarrow \\
& =\frac{26 \times 60}{1.6 \times 10^{-19}} \approx 10^{21}
\end{aligned}
$$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	B	D	A	C	D	D	A	D	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	D	C	B	C	B	C	D	A	A	B			

