CLASS : XIITH DATE : Solutions

SUBJECT : PHYSICS DPP NO. : 2

Topic :- Current Electricity

1 (a) Ammeter is always connected in series and voltmeter in parallel. 2 (a) (a) $S = \frac{G}{\frac{i}{i_{a}} - 1} = \frac{25}{\frac{5}{50 \times 10^{-6}} - 1} = \frac{25}{10^{5} - 1} = \frac{25}{10^{5}} = 2.5 \times 10^{-4} \Omega$ 3 (a) Potential gradient $= \frac{V}{L} = \frac{iR}{L} = \frac{i\rho L}{AL} = \frac{i\rho}{A}$ $=\frac{0.2\times40\times10^{-8}}{8\times10^{-6}}=10^{-2}V/m$ 4 (c) The given circuit can be redrawn as follows 6*V*, 1Ω ł⊢ Α Current $i = \frac{6}{6+4+1} = \frac{6}{11}A$ P.D. between *A* and *B*, $V = \frac{6}{11} \times 10 = \frac{60}{11}V$ 5 **(b)** 1 division $= 1\mu A$ Current for $1^{\circ}C = \frac{40\mu V}{10} = 4\mu A$ $1\mu A = \frac{1}{4}$ °C = 0.25°C 6 (a)

Two resistances of each side of triangle are connected in parallel. Therefore, the effective

resistance of each arm of the triangle would be $=\frac{r \times r}{r+r} = \frac{r}{2}$. The two arms *AB* and *AC* are in series and they together are in parallel with third one.

$$\therefore R'(r/2) + (r/2) = r$$

Total resistance

$$\frac{1}{R} = \frac{1}{r} + \frac{2}{r} = \frac{3}{r}$$
$$R = r/3$$

(d)

$$I = neAv_d$$

or $v_d = \frac{1}{neA}$
or $v_d \propto \frac{I}{A}$
 $\therefore \frac{v'd}{vd} = \frac{I'/A'}{I/A} = \frac{2I/2A}{I/A} = 1$
or $v'd = v_d = v$

8

(d) Let the resistance of the wire be *R*, then we know that resistance is proportional to the length of the wire. So each of the four wires will have *R*/4 resistance and they are connected in parallel. So the effective resistance will be

$$\frac{1}{R_1} = \left(\frac{4}{R}\right) 4 \Rightarrow R_1 = \frac{R}{16}$$

9

(b)

(d)

(a)

By Faraday's law, $m \propto it$

$$\therefore \frac{m_1}{m_2} = \frac{i_1 t_1}{i_2 t_2} \Rightarrow \frac{m}{m_2} = \frac{4 \times 120}{6 \times 40} \Rightarrow m_2 = \frac{m}{2}$$

10

 $1 \text{ coulomb } \times 1 \text{ volt} = 1 \text{ joule}$

Hence, option (d) is incorrect.

$$\frac{i}{i_g} = 1 + \frac{G}{S} \Rightarrow \frac{i.G}{V_g} = 1 + \frac{G}{S} \Rightarrow \frac{100 \times 10^{-3} \times 40}{800 \times 10^{-3}} = 1 + \frac{40}{S}$$
$$\Rightarrow S = 100$$

12

This is a balanced Wheatstone bridge. Therefore no current will flow from the diagonal resistance $10 \Omega\,$

: Equivalent resistance
$$=\frac{(10+10) \times (10+10)}{(10+10) + (10+10)} = 10\Omega$$

13 (a) $E = at + \frac{1}{2}bt^2$...(i) Differentiating Eq. (i), w.r.t., t We have $\frac{dE}{dt} = a + bt$ When $t = t_n$, ie, neural temperature, then $\frac{dE}{dt} = 0$ $\therefore 0 = a + bt_n \text{ or } t_n = -\frac{a}{b}$ The temperature of inversion $t_i = 2t_n = t_0$ $=2t_n \cdot 0 = -\frac{2a}{h}$ Thermoelectric power $P = \frac{dE}{dt} = a + bt$ 14 (c) Since, charge (q)=current (i) × times (t)Therefore, charge is equal to area under the curve. \therefore Ist rectangle =q=lb=2 IInd rectangle =q=lb=2IIIrd triangle = $q = \frac{1}{2}lb = 2$ Hence, ratio is 1:1:1. 15 **(b)** The internal resistance of battery is given by $r = \left(\frac{E}{V} - 1\right)R = \left(\frac{40}{30} - 1\right) \times 9 = \frac{9 \times 10}{30} = 3\Omega$ 16 (a) Conductivity $\sigma = \frac{1}{\rho}$...(i) and conductance $G = \frac{1}{p}$ $\Rightarrow GR = 1$ (ii) From equation (i) and (ii) $\sigma = \frac{GR}{\rho}$ 18 (d) Let the current in 12Ω resistance is *i* Applying loop theorem in closed mesh AEFCA 12i = -E + E = 0 $\therefore i = 0$

19

(b)
$$P \propto V^2 \Rightarrow \frac{P}{P_0} = \left(\frac{V}{V_0}\right)^2 \Rightarrow P = \left(\frac{V}{V_0}\right)^2 P_0$$

20

(a)

$$P = \frac{V^2}{R} \Rightarrow \frac{P_P}{P_S} = \frac{R_S}{R_P} = \frac{(R_1 + R_2)}{R_1 R_2 / (R_1 + R_2)} = \frac{(R_1 + R_2)^2}{R_1 R_2}$$

$$\Rightarrow \frac{100}{25} = \frac{(R_1 + R_2)^2}{R_1 R_2} \Rightarrow \frac{R_1}{R_2} = \frac{1}{1}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	А	А	А	С	В	A	D	D	В	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	А	А	А	С	В	A	А	D	В	А

