CLASS : XIITH
DATE:

Topic :- Current Electricity

1

2
(a)

Ammeter is always connected in series and voltmeter in parallel.
(a)
$S=\frac{G}{\frac{i}{i_{g}}-1}=\frac{25}{\frac{5}{50 \times 10^{-6}}-1}=\frac{25}{10^{5}-1}=\frac{25}{10^{5}}=2.5 \times 10^{-4} \Omega$

3

4
(a)

Potential gradient $=\frac{V}{L}=\frac{i R}{L}=\frac{i \rho L}{A L}=\frac{i \rho}{A}$
$=\frac{0.2 \times 40 \times 10^{-8}}{8 \times 10^{-6}}=10^{-2} \mathrm{~V} / \mathrm{m}$
(c)

The given circuit can be redrawn as follows

Current $i=\frac{6}{6+4+1}=\frac{6}{11} A$
P.D. between A and $B, V=\frac{6}{11} \times 10=\frac{60}{11} V$
(b)

1 division $=1 \mu \mathrm{~A}$
Current for $1^{\circ} \mathrm{C}=\frac{40 \mu \mathrm{~V}}{10}=4 \mu \mathrm{~A}$
$1 \mu A=\frac{1}{4}{ }^{\circ} \mathrm{C}=0.25^{\circ} \mathrm{C}$
(a)

Two resistances of each side of triangle are connected in parallel. Therefore, the effective
resistance of each arm of the triangle would be $=\frac{r \times r}{r+r}=\frac{r}{2}$. The two arms $A B$ and $A C$ are in series and they together are in parallel with third one.
$\therefore R^{\prime}(r / 2)+(r / 2)=r$
Total resistance
$\frac{1}{R}=\frac{1}{r}+\frac{2}{r}=\frac{3}{r}$
$R=r / 3$
(d)

$$
I=n e A v_{d}
$$

or $v_{d}=\frac{1}{n e A}$
or $v_{d} \propto \frac{I}{A}$
$\therefore \frac{v^{\prime} d}{v d}=\frac{I^{\prime} / A^{\prime}}{I / A}=\frac{2 I / 2 A}{I / A}=1$
or $\quad v^{\prime} d=v_{d}=v$
8 (d)
Let the resistance of the wire be R, then we know that resistance is proportional to the length of the wire. So each of the four wires will have $R / 4$ resistance and they are connected in parallel. So the effective resistance will be
$\frac{1}{R_{1}}=\left(\frac{4}{R}\right) 4 \Rightarrow R_{1}=\frac{R}{16}$
(b)

By Faraday's law, $m \propto$ it

$$
\therefore \frac{m_{1}}{m_{2}}=\frac{i_{1} t_{1}}{i_{2} t_{2}} \Rightarrow \frac{m}{m_{2}}=\frac{4 \times 120}{6 \times 40} \Rightarrow m_{2}=\frac{m}{2}
$$

(d)

1 coulomb $\times 1$ volt $=1$ joule
Hence, option (d) is incorrect.
(a)
$\frac{i}{i_{g}}=1+\frac{G}{S} \Rightarrow \frac{i . G}{V_{g}}=1+\frac{G}{S} \Rightarrow \frac{100 \times 10^{-3} \times 40}{800 \times 10^{-3}}=1+\frac{40}{S}$
$\Rightarrow S=10 \Omega$
(a)

This is a balanced Wheatstone bridge. Therefore no current will flow from the diagonal resistance 10Ω
\therefore Equivalent resistance $=\frac{(10+10) \times(10+10)}{(10+10)+(10+10)}=10 \Omega$
$E=a t+\frac{1}{2} b t^{2}$
Differentiating Eq. (i), w.r.t., t
We have
$\frac{d E}{d t}=a+b t$
When $t=t_{n}$ ie, neural temperature, then
$\frac{d E}{d t}=0$
$\therefore 0=a+b t_{n}$ or $t_{n}=-\frac{a}{b}$
The temperature of inversion
$t_{i}=2 t_{n}=t_{0}$

$$
=2 t_{n}-0=-\frac{2 a}{b}
$$

Thermoelectric power
$P=\frac{d E}{d t}=a+b t$
(c)

Since, charge $(q)=$ current $(i) \times$ times (t)
Therefore, charge is equal to area under the curve.
\therefore Ist rectangle $=q=l b=2$
IInd rectangle $=q=l b=2$
IIIrd triangle $=\mathrm{q}=\frac{1}{2} \mathrm{lb}=2$
Hence, ratio is 1:1:1.
(b)

The internal resistance of battery is given by

$$
r=\left(\frac{E}{V}-1\right) R=\left(\frac{40}{30}-1\right) \times 9=\frac{9 \times 10}{30}=3 \Omega
$$

(a)

Conductivity $\sigma=\frac{1}{\rho}$
and conductance $G=\frac{1}{R}$
$\Rightarrow G R=1$
From equation (i) and (ii) $\sigma=\frac{G R}{\rho}$
(d)

Let the current in 12Ω resistance is i
Applying loop theorem in closed mesh AEFCA
$12 i=-E+E=0$
$\therefore i=0$

19

20
(a)
$P=\frac{V^{2}}{R} \Rightarrow \frac{P_{P}}{P_{S}}=\frac{R_{S}}{R_{P}}=\frac{\left(R_{1}+R_{2}\right)}{R_{1} R_{2} /\left(R_{1}+R_{2}\right)}=\frac{\left(R_{1}+R_{2}\right)^{2}}{R_{1} R_{2}}$
$\Rightarrow \frac{100}{25}=\frac{\left(R_{1}+R_{2}\right)^{2}}{R_{1} R_{2}} \Rightarrow \frac{R_{1}}{R_{2}}=\frac{1}{1}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	A	A	A	C	B	A	D	D	B	D	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	A	A	A	C	B	A	A	D	B	A	

