

Class: XIIth Date:

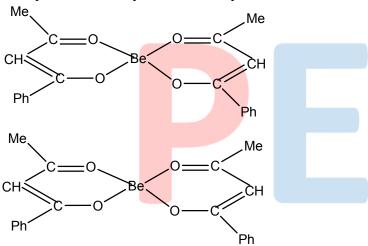
Solutions

Subject: CHEMISTRY

DPP No.: 8

Topic:- Coordination Compounds

1 (a)


This is Sandmeyer's reaction.

2 **(c**

p-nitrophenols are more acidic.

3 **(c**)

Benzoylacetonato beryllium exhibit optical isomerism as follows

bis (benzoylacetonato) beryllium (II) complex

4 **(d)**

 Cl^- is a weak ligand but Cl^- cause the pairing of electron with large Pt^{2+} and consequently give dsp^2 hybridisation and square planar geometry.

5 **(b)**

It is a double salt;

 $FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 6H_2 O \longrightarrow Fe^{2+} + 2SO_4^{2-} + 2NH_4^+$

6 **(d**)

Potassium ferrocyanide $K_4[Fe(CN)_6]$ will ionize as

 $K_4[Fe(CN)_6] \rightleftharpoons 4K^+ + [Fe(CN)_6]^{4-}$

So, it will give five ions in solution

7 **(b**)

cis-platin is not a organimetallic compound because it has no carbon- metal bonding

8 **(d)**

Follow mechanism of Reimer-Tiemann reaction.

9 **(b)**

When n= even number then for two identical ends, number of geometrical isomers

$$=2^{n-1}+2^{n/2-1}$$

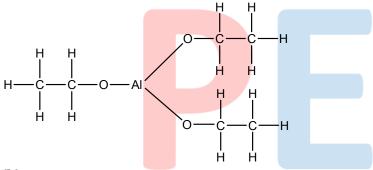
$$=2^1+2^0$$

$$=3$$

10 **(d)**

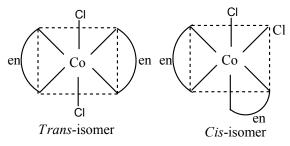
The characteristics of coordination number.

11 (d)

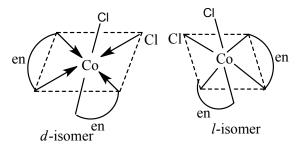

Aliphatic amines are more basic than aromatic amines as the later are more stablised due to resonance.

12 **(d)**

Aromatic hydrocarbons are called arenes with general formula C_nH_{2n-6y} , where $n \not < 6$ and y is no. of cyclic rings. Benzene has one ring and n = 6, *i.e.*, no. of carbon atoms. Thus, general formula is C_6H_6 . All other aromatic hydrocarbons are derivative of benzene.


13 **(a**)

 $Al(OC_2H_5)_3$ doesn't have metal-carbon bond. (*i.e.*, it is not an example of organometallic compound).


14 **(b)**

In $[Co(en)_2Cl_2]$, four isomers are possible, two geometrical isomers and two optical isomers.

Now, *cis*-isomer also show optical isomerism. *Cis* isomer exists in enantiomeric form as it is unsymmetrical.

Plane mirror

15 **(b)**

A carbon atom which is attached by four different group is called an asymmetric carbon atom or chiral centre

HOOC(CHOH)₂COOH has two asymmetric carbon atom

16 **(c)**

Each π -electron is delocalised on each C-atom.

17 **(a)**

An orange-red dye is formed with C₆H₅NH₂.

19 **(a)**

Thiophene reacts more readily with H_2SO_4 than C_6H_6 giving thiophene sulphonic acid which is water soluble and thus, can be separated from C_6H_6 . This can not be made by fractional distillation because thiophene and C_6H_6 both have nearly same b.p.

20 **(b)**

As cobalt is present as CO^{3+} and coordination number of cobalt is 6, the molecular formula of compound should be $CoCl_3$. yNH_3 . Now, as it gives a total of three ions when dissolved in water, its structural formula must be

 $[CoCl(NH_3)_5]Cl_2$

 $[CoCl(NH_3)_5]Cl_2 \rightleftharpoons [CoCl(NH_3)_5]^{2+} + 2Cl^{-}$

Thus, only one Cl^- ion is satisfying both primary and secondary valency of Co^{3+} in this compound.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	C	C	D	В	D	В	D	В	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	D	A	В	В	C	A	C	A	В

