

Class : XIIth Date :

Solutions

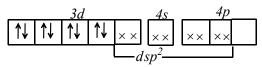
Subject : CHEMISTRY DPP No. : 4

Topic :- Coordination Compounds

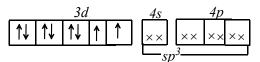
1	(a) According to Werner's theory, only those ions are precipitated which are attached to the metal atoms with ionic bonds and are present outside the coordination sphere. $[Pt(NH_3)_6]Cl_4 \rightleftharpoons Pt(NH_3)_6^{4+} + 4Cl^{-}$
2	(d)
	It is a fact.
3	(d)
	In acidic solution, proton coordinate with ammonia to form $\mathrm{NH}_4^+.\mathrm{NH}_4^+$ does not act as
	ligand because nitroge <mark>n atom has no l</mark> one pair of electrons which it can donate to metal
	atom
4	(d)
	Disubstituted cyclic compounds and disubstituted alkenes show geometrical isomerism
5	(d)
	$Ag(NH_3)_2^+$ has sp-hybridization and linear complex.
7	(a)
	The replacement of Cl is due to the formation of stable benzyl carbocation.
	Alternatively Cl is present in side chain and thus replaced whereas Br is attached in
	benzene nucleus.
	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Ö

Cl-CH₂-


N-CH₂-

Br


8

(d)

The electronic configuration of Ni in $[Ni(CN)_4]^{2-}$, $[Ni(Cl)_4]^{2-}$ and $Ni(CO)_4$ are: Ni^{2+} in $[Ni(CN)_4]^{2-}$:

 Ni^{2+} in $[Ni(Cl_4)]^{2-}$:

Ni in $[Ni(CO)_4]$:

9

(b)

(c)

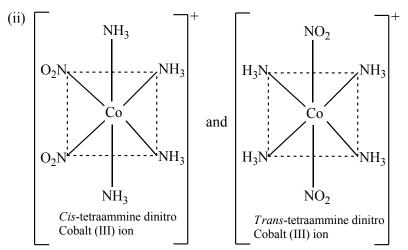
(d)

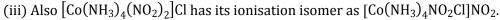
Replacement of N_2 Cl by halogen atom of CuX - HX from benzene diazonium chloride is called Sandmeyer's reaction.

10

Optical isomerism is shown by the type $[M(AA)X_2Y_2]$, $[M(AA)_3]$, $[M(AA)_2X_2]$

11


1,2-dimethyl cyclobut-1-ene


$$HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ + 2HSO_4^- + H_3O^+.$$

14

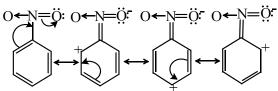
(i) $-NO_2$ can show linkage

$$\left(-O-N=O \text{ or } -N \left(O\right)\right)$$
 isomerism

15

(d)									
Complex	Hybridization								
[Ni(CO) ₄]	sp ³								
$[Ni(CO)_4]^{2-}$	dsp ²								
$[CoF_6]^{3-}$	$sp^{3}d^{2}$								
$[Fe(CN)_{6}]^{3-}$	d^2sp^3								

16 **(d)**


2, 4, 6-trinitrophenol is known as picric acid, an explosive.

17 **(c)**

It is a fact. (b)

19

OH gp., an *o*- and *p*-directing group activates ring for reactions. The presence of *m*-directing groups in benzene nucleous simply decreases electron density at *o*- and *p*-, whereas no change in electron density at *m*-position is noticed.

On the contrary *o*-and *p*-directing groups in nucleus increases the electron density at *o*-and *p*-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_E reactions

If magnetic moment is zero the species should not have unpaired electrons.

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	Α	D	D	D	D	В	Α	D	В	С	
Q .	11	12	13	14	15	16	17	18	19	20	
A.	D	B	С	D	D	D	С	D	B	Α	