

Class: XIIth Date:

Solutions

Subject: CHEMISTRY

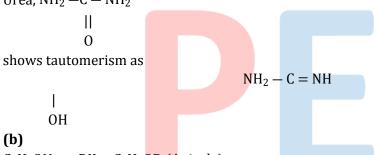
DPP No.: 10

Topic:-Coordination Compounds

1 **(b)**

Follow IUPAC rules.

2 **(b**)


$$2\text{CuSO}_4 + 10\text{KCN} \rightarrow 2\text{K}_3\text{Cu}(\text{CN})_4 + (\text{CN})_2 + 2\text{K}_2\text{SO}_4$$

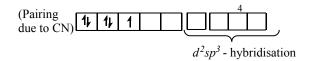
3 **(c)**

Follow definition of hydration isomerism.

4 (c)

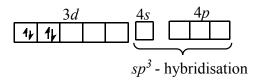
Urea, $NH_2 - C - NH_2$

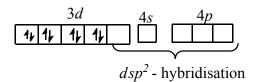
(b)


 $C_6H_5ONa + RX \rightarrow C_6H_5OR$ (Anisole)

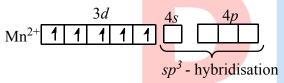
7 **(c**)

Diamagnetic substances have all paired electron.


1. $[Fe(CN)_6]^{3-}$ Oxidation state of Fe=+3


It has one unpaired electron and is paramagnetic.

2. $[NiCl_4]^{2-}$ Oxidation state of Ni=+2


It has two unpaired electrons and is paramagnetic

3. $Ni(CO)_4$ Oxidation state of Ni=0

It has no unpaired electron and is diamagnetic

4.
$$[MnCl_4]^{2-}$$
 Oxidation state of $Mn = +2$

∴ It is paramagnetic as it has five unpaired electrons.

8 **(a)**

 $\ensuremath{\mathsf{CN^-}}$ is strongest field ligand. The spectrochemical series order is:

$$I^- < Br^- < Cl^- < F^- < [C_2O_4]^{2-} < H_2O < py < NH_3 < en < NO_2^- < CN^- < CO$$
.

10 **(b)**

 $\left[\text{Co(NH}_3)_5 \text{ ONO} \right]^{2+}$

Penta ammine nitrito cobalt (III) ion.

11 (c

In $[Ag(NH_3)_2]Cl_2Ag^+$ contains d^{10} configuration. As others contain unpaired electrons

12 **(c)**

 CH_3 gp., an o-and p-directing group attached in nucleus activates the ring for S_E reactions. The presence of m-directing groups in benzene nucleous simply decreases electron density at o- and p-, whereas no change in electron density at m-position is noticed.

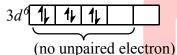
On the contrary o-and p-directing groups in nucleus increases the electron density at o-

and *p*-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_E reactions

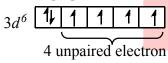
13 **(d)**

In both $[Co(NH_3)_6]^{3+}$ and $[CoF_6]^{3+}$, Co is present as Co^{3+} .


Thus, the electronic configuration of Co is

$$_{27}\text{Co}=[\text{Ar}] 3d^7,4s^2$$

 $_{27}\text{Co}^{3+}=[\text{Ar}]3d^6$, $4s^0$


In case of $[Co(NH_3)_6]^{3+}$, NH₃ is a strong field ligand, so pairing of electrons in 3*d*-orbital takes place.

 $_{27}\text{Co}^{3+}=[\text{Ar}]3d^6, 4s^0$

In $[CoF_6]^{3+}$, F is a weak field ligand, thus doesn't cause pairing. Hence,

$$_{27}\text{Co}^{3+}=[\text{Ar}]3d^6$$
, $4s^0$

18 **(d)**

It is a test for primary amines. No doubt 2,4-dimethylaniline is also primary amine but it does not give test due to steric hindrance.

19 **(b)**

CN $^-$ is strong field ligand because it is an example of pseudohalide. Pseudohalide ions are stronger coordinating ligands and they have the ability to form σ bond and π -bond.

20 **(b**)

Higher the charge and smaller the size of ligand, more stable is the complex formed

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	В	C	C	В	В	C	A	C	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	С	D	D	C	C	В	D	В	В

