

Class: XIIth

Date:

Solutions

Subject : CHEMISTRY

DPP No.: 1

Topic:- Coordination Compounds

2 **(b)**

Cr²⁺, Mn²⁺, Fe²⁺and Ni²⁺ have 4, 5, 4 and 2 unpaired electrons respectively.

3 **(a**

It is a reason for the fact.

6 **(d)**

$$\begin{array}{c}
0 \\
| | \\
CH_3CH_2 - C - CH_2CH_3 \leftrightarrow \\
\text{(keto form)} \\
OH \\
| \\
CH_3 - CH = C - CH_2CH_3
\end{array}$$
(enol form)

7 **(c)**

Non-polr part C_6H_5 —shows more hydrophobic nature.

9 **(d**)

All involve d^2sp^3 -hybridization.

11 **(b)**

Aromatic amines are less basic than aliphatic amines. Also presence of electron attracting group decreases the basic character of aromatic amines.

12 **(a)**

Follow IUPAC rules.

13 **(d)**

All are weak field ligands and thus, give high spin complex.

14 **(d**)

Tartaric acid is

2,3-dihydroxybutane-1,4-dioic acid

15 **(a)**

 β_4 for $[ML_4]^{2-}$ can be written as

$$\beta_4 = \frac{[ML_4]^{2-}}{[M^{2+}][L^-]^4} = 2.5 \times 10^{13}$$

The overall formation equilibrium constant can be written as

$$k = \frac{[ML_4]^{2-}}{[M^{2+}][L^{-1}]^4}$$

$$k = \beta_4 = 2.5 \times 10^{13}$$

16 **(d)**

$$\left[\operatorname{Cr}(\operatorname{NH}_3)_4\operatorname{Cl}_2\right]^+$$

Let oxidation state of Cr = x

$$NH_3=0$$

$$Cl = -1$$

Net charge =+1

$$\therefore \left[Cr(NH_3)_4 Cl_2 \right]^+$$

$$x+4 \times 0+2(-1)=+1$$

$$x=+3$$

17 **(b)**

Phenols are acidic; alcohols are neutral.

18 **(b)**

$$2 \times a + 4 \times (-2) + 2 \times 0 + 2 \times 0 = -2$$
, $\therefore a = +3$

19 **(c)**

CH₃MgI (Grignard reagent) is an organometallic compound due to C—Mg bond.

20 **(c)**

Effective atomic number = electrons in Cr^{3+} +electrons form $6NH_3$ ligands.

$$=21+6 \times 2=33$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	C	В	A	В	В	D	C	D	D	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	A	D	D	A	D	В	В	С	C

