

Class : XIth Date :

Solutions

Subject : CHEMISTRY DPP No. : 9

Topic :- Classification of Elements & Periodicity in Properties

1	(c)								
•	Electron affinity order for halogens is $Cl > F > Br > I$.								
2	(b)								
_	N atom has smallest radius.								
3	(b)								
	Halogens (ns^2np^3) after getting one electron occupy ns^2np^6 configuration, thus have EA_2								
	zero								
4	(c)								
	In general, density incr <mark>eases</mark> on m <mark>oving</mark> downward in a group but density of potassium (K)								
	is lesser than that of th <mark>e sod</mark> ium (N <mark>a). Th</mark> is is because of the abnormal increase in atomic								
	size on moving from N <mark>a (86</mark> pm) to <mark>K (2</mark> 27 pm).								
	Thus, the correct order of density is								
	Li < K < Na < Rb								
5	(b)								
	The oxide having maxi <mark>mum</mark> heat of formatio <mark>n per oxygen a</mark> tom (thus energy needed to								
	break one $M - 0$ bond will be highest) will be most stable.								
	MgO is most stable oxide among Na ₂ O, SiO ₂ , Al ₂ O ₃ and MgO.								
6	(c)								
	If Aufbau rule is not followed then $19^{ ext{th}}$ electron in K enters in $3d$ sub-shell, not in $4s$								
7	(a)								
	The most electronegative element is F and next to F is O.								
8	(c)								
	Larger is the size of atom, lesser is the tendency for overlapping, lesser is bond energy.								
9	(c)								
	Bond angles in BeCl ₂ ,NH ₃ ,H ₂ O and SnCl ₂ are 180°,107°,104.5° and 119° respectively. Also								
	$ m H_2S, m H_2O, m H_2Se$ has sp^3 -hybridization and bond angles of hydrides decreases down the								
	group.								
10	(c)								
	The correct increasing basic strength:								
	$SbH_3 < AsH_3 < PH_3 < NH_3$								
	NH_3 is the most basic because of its small size, the electron density of electron pair is								
	concentrated over small region. As the size increases, the electron density gets diffused								

over a large surface area and hence the ability to donate the electron pair (basicity) decreases.

11 **(b)**

Each period consists of a series of elements whose atoms have the same principal quantum number (*n*) of the outermost shell, *ie*, in second period, n = 2, this shell has four orbitals (one 2*s* and three 2*p*) which can have eight electrons, hence second period contain 8 elements from atomic number 3 to 10

12 **(b)**

Om moving along a period, ionisation enthalpy increases. Thus, the order of ionisation enthalpy should be as follow :

But N has half-filled structure, therefore, it is more stable than O, That's why its ionisation erthalpy is highper than O. Thus, the correct order of IE is

13 **(b)**

This give rise to polarity in bonds.

14 **(a)**

BeO is most acidic in nature amongst the given choices because acidity of oxides increases with decreases in electropositive character of central atom.

15 **(c)**

NaCl exist as Na⁺Cl⁻.

16 **(a)**

NH₃ has pyramidal shape and thus, possesses three folds axis of symmetry.

17 **(c)**

Larger is the difference in electronegativities of two atom, more is polar character in bond.

18 **(a)**

Non-polar or pure covalent bond has zero per cent ionic character due to the absence of partial charges on either end.

19 **(c)**

N in it has three σ -bonds and one lone pair of electron.

20 **(a)**

Mendeleef failed to assign positions to isotopes on the basis of atomic mass according to his periodic law

ANSWER-KEY												
Q .	1	2	3	4	5	6	7	8	9	10		
A.	С	В	В	С	В	С	A	С	С	С		
Q .	11	12	13	14	15	16	17	18	19	20		
A.	В	В	В	Α	С	Α	С	A	С	Α		

