Class: XIth
Solutions
Subject : CHEMISTRY
DPP No. : 2

Topic :- Classification of Elements \& Periodicity in Properties

1
(c)
CO_{2} is linear molecule.
(b) overlapping).
(b)

Each has 22 electrons.
(b)

(a)

 $\mathrm{a}^{+}, \mathrm{Li}^{+}$and K^{+})(a)
(b)
(b)
(c)
(b)
(d)

He has $1 s^{2}$ configuration.
(b) orbital. Hence, the order of IE is as
(d)

Only p-orbitals give rise to σ-bond (head on overlapping) and π-bond (lateral
$\mathrm{BF}_{3}: s p^{2} \mathrm{NO}_{2}^{-}: s p^{2} \mathrm{NH}_{3}: s p^{3} \mathrm{NH}_{2}^{-}: s p^{3} \mathrm{H}_{2} \mathrm{O}: s p^{3}$

Atomic and ionic radii increase from top to bottom in a group due to the inclusion of another shell at every step. Hence, Cs^{+}ion will be the largest among given IA group ions (N

Due to non-availability of d-orbitals, boron cannot expand its octet. Therefore, the maximum covalence of boron cannot exceed 4 .

Larger anion is easily deformed (Follow Fajans' rule).
ClO_{3}^{-}has $s p^{3}$-hybridization with one lone pair of electron.

Silicon has the tendency to show covalent bonding because of higher IP values.
$\mathrm{BeCl}_{2}-s p ; \mathrm{BF}_{3}-s p^{2} ; \mathrm{NH}_{3}-s p^{3} ; \mathrm{XeF}_{2}-s p^{3} d$

Ionisation energies increase in a period on moving left to right while it decreases in a group on moving downward. The IE of Be is greater than B due to completely filled s -

$$
\mathrm{Be}>B>L i>N a .
$$

In inner transition elements, the differentiating electrons enter into ($6 n-2$) f orbital. Therefore, these elements are also known as f-block elements.
(c) Ionic compounds conduct current in molten state.
(a)

Difference of electronegativity >1.7 produces ionic compound.
(c)

Ionic radii $\propto \frac{1}{Z_{\text {eff }}}$
(d)

In sulphur, the excitation of $n p$-electrons to $n d$-subshell gives rise to increase in number of unpaired electrons.
(b)

As the number of shells increases, ionic radii increases

| ANSWER-KEY | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| A. | \mathbf{B} | \mathbf{B} | \mathbf{B} | \mathbf{A} | \mathbf{A} | \mathbf{B} | \mathbf{B} | \mathbf{A} | \mathbf{A} | \mathbf{C} |
| | | | | | | | | | | |
| Q. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| A. | \mathbf{B} | \mathbf{D} | \mathbf{C} | B | D | C | A | C | D | B |
| | | | | | | | | | | |

