CLASS : XIth DATE :

DAILY PRACTICE PROBLEMS

DPP

SUBJECT : CHEMISTRY DPP No. : 9

Topic :- THERMODYNAMICS

1	(c)							
	<i>E</i> and $G(H - TS)$ are state functions. Also, $\Delta E = q + w$ is state function. But q and w are							
	path dependent and not state functions.							
2	(c)							
	An isolated system neither shows exchange of heat nor matter with surroundings.							
4	(b)							
	No doubt (a) and (b) both represent heat of formations but standard heat of formation (Δ							
	$H^{\circ}f$) for CO ₂ will be from C _(graphite) + O ₂ \rightarrow CO ₂ as C _(graphite) is most stable form of carbon.							
5	(a)							
	For an isothermal process, $\Delta E = 0$							
	As the process is taki <mark>ng place at con</mark> stant <i>T</i> and <i>p</i> hence, from equation,							
	$G(H - TS)$ are state functions. Also, $\Delta E = q + w$ is state function. But q and w are expendent and not state functions. atted system neither shows exchange of heat nor matter with surroundings. atted system neither shows exchange of heat nor matter with surroundings. (Δu) and (b) both represent heat of formations but standard heat of formation (Δv r CO ₂ will be from $C_{(graphite)} + O_2 \rightarrow CO_2$ as $C_{(graphite)}$ is most stable form of carbon. isothermal process, $\Delta E = 0$ process is taking place at constant T and p hence, from equation, $\Delta H = \Delta E + \Delta p.V$ we, $\Delta H = 0 + 0 \times V = 0$, for the process, $\Delta H = \Delta E = 0$ hermal condition $T = \text{ constant}$. eat of formation of CO is calculated by using Hess's law. According to it, the eat changes occurring during a chemical reaction are independent of path. $(2) + O_2(g) \rightarrow 2CO_2(g); \Delta H = -135.2 \text{ kcal}$ $(g) \rightarrow CO(g) + \frac{1}{2}O_2(g); \Delta H = \frac{135.2}{2} \text{ kcal}$ $s) + O_2(g) \rightarrow CO_2(g); \Delta H = -94 \text{ kcal}$ red equation $(\frac{1}{2}O_2(g) \rightarrow CO(g); \Delta H = ?$ qs. (1) and (11) $(\frac{1}{2}O_2(g) \rightarrow CO(g); \Delta H = -26.4 \text{ kcal}$ te possesse lesser energy than diamond.							
	We have, $\Delta H = 0 + 0 \times V = 0$							
	Hence, for the process, $\Delta H = \Delta E = 0$							
6	(b)							
	At isothermal condition $T = \text{ constant.}$							
7	(a)							
	The heat of formation of CO is calculated by using Hess's law. According to it, the							
	total heat changes occurring during a chemical reaction are independent of path.							
	$2CO(g) + O_2(g) \rightarrow 2CO_2(g); \qquad \Delta H = -135.2 \text{ kcal}$							
	(I)CO ₂ (g) \rightarrow CO(g) + $\frac{1}{2}$ O ₂ (g); $\Delta H = \frac{135.2}{2}$ kcal							
	(II) $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = -94$ kcal							
	Required equation							
	$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g); \qquad \Delta H = ?$							
	Add Eqs. (I) and (II)							
	$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g); \qquad \Delta H = -26.4 \text{ kcal}$							
8	(d)							
	Graphite possesses lesser energy than diamond.							
10	(a)							

Under adiabatic conditions work is done on the cost of internal energy of system.

11

(b) $\Delta G = \Delta H - T\Delta S$ $\therefore \Delta G = -11700 - 298 \times (-105)$ = +19590 J = +19.59 kJThus, reaction is non-spontaneous.

12 **(c)**

Internal energy, enthalpy and entropy are state functions but work and heat are path functions.

13 **(a)**

 $q = \Delta U - W$; -W is work done by the system $\Delta U = 40 - 8 = 32$ J ($\because -W = 8$)

14

(a)

(c)

(b)

At constant volume, heat of reaction is ΔU .

15

2.303
$$\log \frac{P_2}{P_1} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$

 $\therefore 2.303 \log \frac{10}{1} = \frac{460.6}{2} \times \frac{[T_2 - 50]}{50 \times T_2}$
 $\therefore T_2 = 100 \text{ K}$

16

Heat of neutralization is defined as the energy released during neutralization of 1 eq. of an acid by 1 eq. of base.

17

(d)

$$S_R + O_2 \rightarrow SO_2; \quad \Delta H = -70.96.....(i)$$

 $S_M + O_2 \rightarrow SO_2; \quad \Delta H = -71.03.....(ii)$
By eq. (i) – (ii),

 $S_R \rightarrow S_M$; $\Delta H = 0.07$ kcal or 70 cal

19 **(d)**

It does not violate the first law of thermodynamics but violates the II law of thermodynamics

20

(c)

If $\Delta H = +$ ve and $\Delta S = -$ ve then the reaction is spontaneous

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	С	С	В	В	Α	В	А	D	C	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	В	C	A	A	C	В	D	D	D	C		

