CLASS : XIth DATE :

DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : CHEMISTRY DPP No. : 7

Topic :- THERMODYNAMICS

1 (c) $Ag^+ + Cl^- \rightarrow AgCl$ is a spontaneous reaction. 2 **(b)** $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$ Thus, V_{0_2} used = $\frac{6226 \times 3 \times 22.4}{1411}$ = 296.5 litre 3 (c) CS₂ is formed from its initial components carbon and hydrogen. 4 (d) $C + O_2 \to CO_2(g); \qquad \Delta H = -94 \text{ kJ.....} (i)$ $Ca + \frac{1}{2}O_2 \to CaO(s); \qquad \Delta H = -152 \text{ kJ.....} (ii)$ $CaCO_3(s) \to CaO(s) + CO_2(g); \Delta H = 42 \text{ kJ......} (iii)$ By eq. [(i) + (ii)]- (iii), Ca + C + $\frac{3}{2}$ O₂ → CaCO₃; $\Delta H = -288$ kJ. 5 (a) PV^{γ} = constant for adiabatic expansion and PV = constant for isothermal expansion $\therefore \log P = -\gamma \log V$ slope = $-\gamma$ $\log P = -\log V$ slope = -16 (c) A part of heat is used in dissociation of CH₃COOH, a weak acid. 7 (a) No doubt solidification shows a decrease in entropy but in egg proteins structure are disordered in solid state due to denaturation. 8 (a) $1 \text{ cal} = 4.18 \text{ J} = 4.18 \times 10^7 \text{ erg} = \frac{4.18}{1.602} \times 10^{19} \text{ eV}$

9	(C)								
	$C + O_2 \rightarrow CO_2; \Delta H = -393.5 \text{ kJ/mol}$								
	: 44 g of CO_2 formed by which heat released = -393.5 kJ								
	\therefore 1 g of CO ₂ formed by which heat released $=\frac{-393.5}{44}$								
	\therefore 35.2 g (given) of CO ₂ formed by which heat released								
	$=-\frac{393.5}{3} \times 35.2 = -314.8$ kI								
10	44, (b)								
10	(U) Only work can be done by a thermally isolated system between it and surroundings								
11	(c)								
	An open system is one which involves exchange of mass and energy.								
13	(c)								
	Gaseous molecules have more random motion.								
14	(d)								
	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O(l); \Delta H = -68.32 \text{ kcal}$								
	$H_2O(l) \rightarrow H_2O(g); \Delta H = 10.52 \text{ kcal}$								
	: $H_2 + \frac{1}{2}O_2 \rightarrow H_2O(g); \Delta H = -57.80$ kcal								
15	(c)								
	$\Delta G = \Delta H - T \Delta S$								
	$\Delta G = 0, \ \therefore \ \Delta H = T \Delta S$								
	$T = \Delta H = 40.63 \times 10^3 = 273.4 \text{ K}$								
1.0	$I = \frac{1}{\Delta S} = \frac{1}{108.8} = 373.4$ K								
16	(b)								
17	(h)								
17	More is heat of ionization of acid more is stability of acid or lesser is dissociation or K								
	$a_{CH_{3}COOH} > K_{aHCN}$. Thus, $pK_{a_{HCN}} > pK_{a_{CH_{3}COOH}}$								
18	(a)								
	Bond breaking process or decomposition processes are endothermic process.								
19	(a)								
	Hess's law states that enthalpy changes during and process are independent of								
	path. So, this law is used in calculating enthalpy.								
20	(d)								
	$\Delta G = \Delta H - T\Delta S : \Delta G = \Delta E + p\Delta V - T\Delta S$								
	For spontaneity $\Delta G = -$ ve								

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	С	В	C	D	Α	С	Α	A	C	В		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	D	C	D	C	В	В	A	A	D		

