CLASS : XIth
SUBJECT : CHEMISTRY
DATE :

Topic :-THERMODYNAMICS

1. When a solid melts, there is:
a) An increase in enthalpy
b) No change in enthalpy
c) A decrease in enthalpy
d) A decrease in internal energy
2. Maximum entropy will be in which of the following?
a) Ice
b) Liquid water
c) Snow
d) Water vapour
3. When enthalpy and entropy change for a chemical reaction are $-2.5 \times 10^{3} \mathrm{cal}$ and 7.4 cal deg^{-1} respectively predict the reaction at 298 K is
a) Spontaneous
b) Reversible
c) Irreversible
d) Non-spontaneous
4. A closed flask contains water in all its three states, solids, liquid and vapour at $0^{\circ} \mathrm{C}$. In this situation the average KE of the water molecule will be:
a) Maximum in vapour state
b) Maximum in solid state
c) Greater in the liquid than in vapour state
d) Same in all the three states
5. If $\mathrm{C}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=r$ and $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=s$ then, the heat of formation of CO is
a) $r+s$
b) $r-s$
c) $s-r$
d) $r s$
6. The value of $\Delta \mathrm{H}^{\circ}$ for the reaction $\mathrm{Cu}^{+}(\mathrm{g})+\mathrm{I}^{-}(\mathrm{g}) \rightarrow \mathrm{CuI}(\mathrm{g})$ is $-446 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If the ionisation energy of $\mathrm{Cu}(\mathrm{g})$ is $745 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the electron affinity of $(\mathrm{I}) \mathrm{g}$ is $-295 \mathrm{~kJ} \mathrm{~mol}^{1}$, then the value of ΔH° for the formation of one mole of $\mathrm{CuI}(\mathrm{g})$ from $\mathrm{Cu}(\mathrm{g})$ and $\mathrm{I}(\mathrm{g})$ is :
a) $-446 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $450 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $594 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
7. The entropy of the universe:
a) Increasing and tending towards maximum value
b) Decreasing and tending to be zero
c) Remains constant
d) Decreasing and increasing with a periodic rate
8. The internal energy of a substance
a) Increases with increase in temperature
b) Decreases with increases in temperature
c) Can be calculated by the relation $E=m c^{2}$
d) Remains unaffected with change in temperature
9. ΔH_{f} of graphite is $0.23 \mathrm{~kJ} / \mathrm{mol}$ and ΔH_{f} of diamond is $1.896 \mathrm{~kJ} / \mathrm{mole} . \Delta \mathrm{H}_{\text {transition }}$ from graphite to diamond is :
a) $1.66 \mathrm{~kJ} / \mathrm{mole}$
b) $2.1 \mathrm{~kJ} / \mathrm{mole}$
c) $2.33 \mathrm{~kJ} / \mathrm{mole}$
d) $1.5 \mathrm{~kJ} / \mathrm{mole}$
10. When two moles of hydrogen expands isothermally against a constant pressure of 1 atm, at $25^{\circ} \mathrm{C}$ from 15 L to 50 L , the work done (in litre atm) will be
a) 17.5
b) 35
c) 51.5
d) 70
11. Which value of heat of formation indicates that the product is the least stable?
a) -94 kcal
b) -231.6 cal
c) +21.4 kcal
d) +64.8 kcal
12. The heat of combustion for $\mathrm{C}, \mathrm{H}_{2}$ and CH_{4} are $-349.0,-241.8$ and -906.7 kJ respectively. The heat of formation of CH_{4} is :
a) 174.1 kJ
b) 274.1 kJ
c) 374.1 kJ
d) 74.1 kJ
13. Given,
(i) $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}, \Delta H=-298.2 \mathrm{~kJ}$
(ii) $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}, \Delta H=-98.7 \mathrm{~kJ}$
(iii) $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta H=-130.2 \mathrm{~kJ}$
(iv) $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta H=-287.3 \mathrm{~kJ}$

Then the enthalpy of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will be
a) -814.4 kJ
b) +320.5 kJ
c) -650.3 kJ
d) -933.7 kJ
14. Based on the first law of thermodynamics, which one of the following is correct?
a) For an isochoric process $=\Delta E=-Q$
b) For an adiabatic process $=\Delta E=-W$
c) For an isothermal process $=Q=+W$
d) For a cyclic process $=Q=-W$
15. According to Hess's law, the heat of reaction depends upon
a) Initial condition of reactants
b) Initial and final conditions of reactants
c) Intermediate path of the reaction
d) End conditions of reactants
16. In which case, a spontaneous reaction is possible at any temperature?
a) $\Delta H-\mathrm{ve}, \Delta S+$ ve
b) $\Delta H-\mathrm{ve}, \Delta S-$ ve
c) $\Delta H+\mathrm{ve}, \Delta S+\mathrm{ve}$
d) In none of the cases
17. Select the incorrect statement:
a) Combustion of F_{2} is exothermic
b) Combustion of N_{2} to $\mathrm{N}_{2} \mathrm{O}$ is endothermic
c) A good fuel have higher calorific value
d) Nutrition calorie $=10^{3}$ calories or 1 cal or 1 kcal
18. The enthalpy change for the following reaction. $\mathrm{NaOH}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ is -57 kJ . Predict the value of the enthalpy change in the following reaction: $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$ $(a q) \rightarrow \mathrm{BaSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)$
a) -57 kJ
b) -76 kJ
c) -114 kJ
d) -228 kJ
19. At $27^{\circ} \mathrm{C}$ one mole of an ideal gas is compressed isothermally and reversible from a pressure of 2 atm to 10 atm . The value of ΔE and q are ($R=2 \mathrm{cal}$)
a) $0,-965.84 \mathrm{cal}$
b) $-965.84 \mathrm{cal},-865.58 \mathrm{cal}$
c) $+865.58 \mathrm{cal},-865.58 \mathrm{cal}$
d) $+965.84 \mathrm{cal},+865.58 \mathrm{cal}$
20. Change in entropy is negative for:
a) Bromine (l) \rightarrow Bromine (g)
b) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
c) $\mathrm{N}_{2}(\mathrm{~g}, 10 \mathrm{~atm}) \rightarrow \mathrm{N}_{2}(\mathrm{~g}, 1 \mathrm{~atm})$
d) $\mathrm{Fe}(1 \mathrm{~mol}, 400 \mathrm{~K}) \rightarrow \mathrm{Fe}(1 \mathrm{~mol}, 300 \mathrm{~K})$

