CLASS : XIth DATE :

Solutions

DAILY PRACTICE PROBLEM

SUBJECT : CHEMISTRY DPP No. : 5

Topic :- THERMODYNAMICS

1. **(a)**

Ice takes up heat to melt and thus, enthalpy change is +ve.

3 (a)

When $\Delta H = -$ ve, $\Delta S = +$ ve and $\Delta G = -$ ve than reaction is spontaneous

4 **(d)**

5

KE = (3/2)RT(b) $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = r$...(i) $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g); \Delta H = s$...(ii) $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g); \Delta H = ?$ Subtract Eq. (ii) from Eq. (i) $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = r$ $CO(g) + \frac{1}{2}O_2 \rightarrow CO_2(g); \Delta H = s$

C(s) +
$$\frac{1}{2}$$
O₂(g)→CO(g); $\Delta H = r - s$
6 (d)
Cu(g)→Cu⁺(g) + e, $\Delta H = 745 \text{ kJ mol}^{-1}$
I(g) + e →I⁻(g); $\Delta H = -295 \text{ kJ mol}^{-1}$
Adding Cu⁺(g) + I⁻(g)→CuI(g); $\Delta H^{\circ} = -446 \text{ kJ mo}^{-1}$
Cu(g) + I(g) →CuI(g); $\Delta H^{\circ} = 4 \text{ kJ mol}^{-1}$
7 (a)

Entropy of universe is tending towards maximum.

9 (a) $\Delta H_{(\text{reaction})} = \Delta H_{f(\text{diamond})} - \Delta H_{f(\text{graphite})}$ = 1.896 -0.23 = 1.666 kJ/mol10 **(b)** p=1 atm $\Delta V = (50 - 15) = 35 \text{ L}$ $W = -p.\Delta V = -1 \times 35$:. = -35 Latm Hence, work done by the system on the surroundings is equal to 35 L-atm. 11 (d) The product possesses maximum energy and thus, least stable. 12 (d) By eq. $[(i) + 2 \times (ii)] - (iii)$, $C + 2H_2 \rightarrow CH_4; \Delta H = 74.1 kJ$ 13 (a) For the equation, $H_2 + S + 2O_2 \rightarrow H_2SO_4$ Eqs. (i) +(ii)+(iii)+(iv) $\Delta H = -287.3 + (298.2) + (-98.7) + (-130.2)$ = 814.4 kJ14 (d) (a) For isochoric process, $\Delta V = 0$ $W = p\Delta V = 0$:. $\Delta E = Q$ (b) For adiabatic process, Q = 0 $\Delta E = W$ (c) For isothermal process, $\Delta T = 0$ $\Delta E = 0$ and Q = -W(d) For cyclic process, state functions like $\Delta E = 0$

- Q = -W
- 16 **(a)** $\Delta G = \Delta H - T\Delta S = -ve - ve = -ve$ 17 **(a)** $F_2 + \frac{1}{2}O_2 \longrightarrow F_2O; \quad \Delta H = +ve.$
- 18 (c)

Two equivalent of each are used.

19 (a)

Isothermally (at constant temperature) and reversible work.

$$W = 2.303 \ nRT \log \frac{p_2}{p_1}$$

= 2.303 × 1 × 2 × 300 log $\frac{10}{2}$
= 2.303 × 600 × log 5 = 965.84

At constant temperature, $\Delta E = 0$

 $\Delta E = q + W, q = -W = -965.84$ cal

20 (d)

The gaseous phase have more entropy and thus, ΔS is +ve in (a) and (b). Also decrease in pressure increases disorder and thus, ΔS is +ve in (c). In (d) the disorder decreases in liquid state due to decrease in temperature. Thus, $\Delta S = -$ ve.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	D	A	D	В	D	A	Α	A	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	D	A	D	В	A	A	С	A	D

