

CLASS : XIth DATE :

SUBJECT : CHEMISTRY DPP No. : 4

Topic :- THERMODYNAMICS

1.	Which is an extensive property of the system?								
	a) Temperature b) Volume c) Refractive index d) Viscosity								
2.	For the reaction; $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$ which one is true?								
	a) $\Delta H = \Delta U - RT$								
	b) $\Delta H = \Delta U + RT$								
	c) $\Delta H = \Delta U + 2RT$								
	d) $\Delta H = \Delta U - 2RT$								
3.	3. The heat atomisation of $PH_3(g)$ is 228 kcal per mol and that of $P_2H_4(g)$ is 335 kcal per								
	energy of $P - P$ bond is								
	a) 102 kcal/mol	o) 31 kcal/mol	c) 26 kcal/mol	d)204 kcal/mol					
4.	If, $H_2(g) + Cl_2(g) \rightarrow 2HCl$;	$\Delta H^{\circ} = -44 \text{ kcal}$							
	$2Na(s) + 2HCl(g) \rightarrow 2NaCl(s) + H_2(g);$								
	$\Delta H = -152 \text{ kcal then,}$ $Na(s) + 0.5 \text{ Cl}_2(g) \rightarrow \text{NaCl}(s); \Delta H^{\circ} = ?$								
	a) 108 kcal								
	b) 196 kcal								
	c) –98 kcal								
	d) 54 kcal								
5.	5. From the reaction, $P_{(white)} \rightarrow P_{(red)}$; $\Delta H = -18.4$ kJ it following that : a) Red P is readily formed from white P								
	b) White P is readily formed from red P								
	c) White P cannot be converted to red P								
	d) White P can be converted into red P and red P is more stable								
6.	If $H^+ + 0H^- \rightarrow H_20 + 13$.7 kcal then the hea	at of neutralization for	or complete neutralization of					
	one mole of H_2SO_4 by a base will be :								
	a) – 13.7 kcal	o) — 27.4 kcal	c) – 6.85 kcal	d) – 3.425 kcal					
7.	Assuming that water var	c vapours are ideal gas. The change in internal energy (ΔU) when 1 mol of							
	water is vaporized at 1 h	ater is vaporized at 1 bar pressure and 100°C. (Given molar enthalpy of vaporization at 1 bar							
	and 373 K is 41 kI mol ⁻¹ and $R = 8.3$ I mol ⁻¹ K^{-1} will be:								
	a) 41.00 kJ mol ^{-1} k	$(3) 4.100 \text{ kJ mol}^{-1}$	c) 3.7904 kJ mol	¹ d) 37.904 kJ mol ⁻¹					
	, ,		, ,	, ,					

8. Change in entropy for a reaction is given by:

	a) 2.303 nR $\log_{10} \frac{V_2}{V_1}$	b) <i>nR</i> log	$\frac{V_2}{V_1}$	c) $nR \log_e \frac{P_1}{P_2}$		d) All of these			
9.	At constant pressure and temperature, the direction of any chemical reaction is one where, the								
	a) Entropy	b) Entha	lpy	c) Gił	bs energy	d) None of these			
10.	Which of the following conditions will always lead to a non spontaneous change?								
	a) Positive ΔH and positive ΔS				b) Negative ΔH and negative ΔS				
	c) Positive ΔH and negative ΔS			d) Ne	d) Negative ΔS and positive ΔS				
11.	Equal volume of two monoatomic gases, A and				<i>B</i> , at same temperature and pressure are mixed.				
	The ratio of specific hea	ats (C_P/C)	<i>V</i>) of the mix	ture will	re will be:				
	a) 0.83	b) 1.50		c) 3.3	;	d)1.67			
12.	Two atoms of hydroge	en combi	ne to form a	molecu	le of hydrog	en gas, the energy of the H_2			
	molecule is : a) Greater than that of separate atoms b) Equal to that of separate atoms c) Lower than that of separate atoms								
	d) Sometimes lower and sometimes higher								
13.	3. The heats of neutralization of four acids A,B,C and D are − 13.7, −9.4, −11.2 and −12.4 kca respectively when they are neutralized by a common base. The acidic character obeys the								
	order :								
	a) $A > B > C > D$	b) $A > D$	> C > B	c) D :	>C>B>A	d) D > B > C > A			
14.	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$); $\Delta H = -$	– 68 kcal. Th	e heat o	change, for th	ne decomposition of 3.6 g of			
	water is :								
	a) 136 kcal	b) 1 <mark>3.6 k</mark>	cal	c) 1.3	6 kcal	d)68 kcal			
15.	When 500 J heat is given to the gas X in an isobaric process its work done comes out as 142.8 J								
	The gas X is								
	a) 0 ₂	b) NH ₃		c) He		d) SO ₂			
16.	Diborane is a potential	rocket fu	el which und	ergoes o	combustion a	ccording to the equation			
	$B_2H_6(g) + 3O_2(g) \rightarrow B_2C$	$v_3(g) + 31$	$H_2O(g)$						
	Calculate the enthalpy	change fo	r the combus	stion of o	diborane. Giv	en			
	(i)2B(s) + $\frac{3}{2}$ O ₂ (g)→B ₂ O ₃ (s); $\Delta H = -1273$ kJ per mol								
	(ii)H ₂ (g) + $\frac{1}{2}$ O ₂ (g)→H ₂ O(<i>l</i>); ΔH = −286 kJ per mol								
	(iii) $H_2O(l) \rightarrow H_2O(g); \Delta H = 44 \text{ kJ per mol}$								
	$(iv)2B(s) + 3H_2(g) \rightarrow B_2H_6(g);\Delta H = 36 \text{ kJ per mol}$								
	a) $+2035$ kJ per mol b) -2035 kJ per mol c) $+2167$ kJ per mol d) -2167 kJ per mol								
17.	To calculate the amount of work done in joules during reversible isothermal expansion								
	of an ideal gas, the volume must be expressed in								
	a) m ³ only b) dm ³ only c) cm ³ only d) Any of these								
18.	Calorific value of carbohydrates is approximately:								

a) 4.0 kcal/g b) 16.0 kcal/g c) 20 kcal/g d) 9.0 kcal/g

19. For a given substance T_1 and T_2 are freezing point and melting point of a substance. Which of the graph represents correctly, the variation of ΔS with temperature?

20. Which is correct for an endothermic reaction?a) ΔH is positiveb) ΔH is negativec) ΔE is negatived) $\Delta H = 0$

