

CLASS: XIth DATE:

Solutions

SUBJECT : CHEMISTRY

DPP No.: 4

Topic:-THERMODYNAMICS

1. **(a)**

Ice takes up heat to melt and thus, enthalpy change is +ve.

3 **(a)**

When $\Delta H = -$ ve, $\Delta S = +$ ve and $\Delta G = -$ ve than reaction is spontaneous

4 **(d)**

KE = (3/2)RT

5 **(b)**

 $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = r$

...(i)

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g); \Delta H = s$$

...(ii)

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g); \Delta H = ?$$

Subtract Eq. (ii) from Eq. (i)

$$C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = r$$

$$CO(g) + \frac{1}{2}O_2 \rightarrow CO_2(g); \Delta H = s$$

 $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g); \Delta H = r - s$

6 **(d**

 $Cu(g) \rightarrow Cu^+(g) + e$, $\Delta H = 745 \text{ kJ mol}^{-1}$

 $I(g) + e \rightarrow I^{-}(g);$ $\Delta H = -295 \text{ kJ mol}^{-1}$

$$\frac{\text{Adding Cu}^{+}(g) + \text{I}^{-}(g) \rightarrow \text{CuI}(g); \Delta H^{\circ} = -446 \text{ kJ mo}}{\text{Cu}(g) + \text{I}(g) \rightarrow \text{CuI}(g);} \quad \Delta H^{\circ} = 4 \text{ kJ mol}^{-1}$$

7 **(a)**

Entropy of universe is tending towards maximum.

9 **(a)**

$$\Delta H_{\text{(reaction)}} = \Delta H_{f(\text{diamond})} - \Delta H_{f(\text{graphite})}$$

$$= 1.896 -$$

$$0.23 = 1.666 \text{ kJ/mol}$$

10 **(b)**

$$p=1$$
 atm

$$\Delta V = (50 - 15) = 35 \text{ L}$$

$$W = -p.\Delta V = -1 \times 35$$

$$= -35 \text{ Latm}$$

Hence, work done by the system on the surroundings is equal to 35 L-atm.

11 **(d)**

The product possesses maximum energy and thus, least stable.

12 **(d)**

By eq.
$$[(i) + 2 \times (ii)] - (iii)$$
,

$$C + 2H_2 \longrightarrow CH_4$$
; $\Delta H = 74.1 \ kJ$

13 **(a)**

For the equation,

$$H_2 + S + 2O_2 \rightarrow H_2SO_4$$

Eqs. (i)
$$+(ii)+(iii)+(iv)$$

$$\Delta H = -287.3 + (298.2) + (-98.7) + (-130.2)$$

$$= 814.4 \text{ kJ}$$

14 **(d)**

(a) For isochoric process, $\Delta V = 0$

$$W = p\Delta V = 0$$

$$\Delta E = Q$$

(b) For adiabatic process, Q = 0

$$\Delta E = W$$

(c) For isothermal process, $\Delta T = 0$

and

$$\Delta E = 0$$

$$Q = -W$$

(d) For cyclic process, state functions like

$$\Delta E = 0$$

$$Q = -W$$

$$\Delta G = \Delta H - T\Delta S = -ve - ve = -ve$$

17 **(a)**

$$F_2 + \frac{1}{2}O_2 \longrightarrow F_2O; \ \Delta H = + ve.$$

18 **(c)**

Two equivalent of each are used.

19 **(a)**

Isothermally (at constant temperature) and reversible work.

$$W = 2.303 \ nRT \log \frac{p_2}{p_1}$$

= 2.303 \times 1 \times 2 \times 300 \log \frac{10}{2}
= 2.303 \times 600 \times \log 5 = 965.84

At constant temperature, $\Delta E = 0$

$$\Delta E = q + W, q = -W = -965.84$$
 cal

20 **(d)**

The gaseous phase have more entropy and thus, ΔS is +ve in (a) and (b). Also decrease in pressure increases disorder and thus, ΔS is +ve in (c). In (d) the disorder decreases in liquid state due to decrease in temperature. Thus, $\Delta S = -$ ve.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	В	A	В	С	D	В	D	D	C	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	С	В	В	A	В	D	A	A	A

