CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY
DPP No. : 4

1. (a)

Ice takes up heat to melt and thus, enthalpy
change is +ve .
3 (a)
When $\Delta H=-$ ve, $\Delta S=+$ ve and $\Delta G=-$ ve than
reaction is spontaneous
4 (d)
$\mathrm{KE}=(3 / 2) R T$
5 (b)
$\mathrm{C}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=r$
...(i)
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=s$
...(ii)
$\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) ; \Delta H=$?
Subtract Eq. (ii) from Eq. (i)
$\mathrm{C}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=r$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=s$
$\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) ; \Delta H=r-s$
6
(d)
$\mathrm{Cu}(\mathrm{g}) \rightarrow \mathrm{Cu}^{+}(\mathrm{g})+\mathrm{e}, \quad \Delta H=745 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{I}(\mathrm{g})+\mathrm{e} \rightarrow \mathrm{I}^{-}(\mathrm{g}) ; \quad \Delta H=-295 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\frac{\text { Adding Cu }}{}{ }^{+}(\mathrm{g})+\mathrm{I}^{-}(\mathrm{g}) \rightarrow \mathrm{CuI}(\mathrm{g}) ; \Delta H^{\circ}=-446 \mathrm{~kJ} \mathrm{mo}$.
(a)

Entropy of universe is tending towards maximum.
9 (a)
$\Delta H_{(\text {reaction })}=\Delta H_{f(\text { diamond })}-\Delta H_{f(\text { graphite })}$ = 1.896 -
$0.23=1.666 \mathrm{~kJ} / \mathrm{mol}$
10 (b)
$p=1$ atm

$$
\begin{array}{rlrl}
& & \Delta V & =(50-15)=35 \mathrm{~L} \\
& \therefore & W & =-p \cdot \Delta V=-1 \times 35 \\
& & =-35 \mathrm{Latm}
\end{array}
$$

Hence, work done by the system on the surroundings is equal to 35 L -atm.
11 (d)
The product possesses maximum energy and thus, least stable.
12 (d)
By eq. [(i) $+2 \times$ (ii)] - (iii),

$$
\mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4} ; \Delta H=74.1 \mathrm{~kJ}
$$

13 (a)
For the equation,
$\mathrm{H}_{2}+\mathrm{S}+2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
Eqs. (i) + (ii) + (iii) $+(i v)$
$\Delta H=-287.3+(298.2)+(-98.7)+(-130.2)$
$=814.4 \mathrm{~kJ}$
14
(d)
(a) For isochoric process, $\Delta V=0$

$$
\begin{array}{ll}
& W=p \Delta V=0 \\
\therefore & \Delta E=Q
\end{array}
$$

(b) For adiabatic process, $Q=0$

$$
\Delta E=W
$$

(c) For isothermal process, $\Delta T=0$

$$
\text { and } \quad \Delta E=0
$$

$$
Q=-W
$$

(d) For cyclic process, state functions like

$$
\Delta E=0
$$

$$
Q=-W
$$

16 (a)
$\Delta G=\Delta H-T \Delta S=-\mathrm{ve}-\mathrm{ve}=-\mathrm{ve}$
17 (a)
$\mathrm{F}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{~F}_{2} \mathrm{O} ; \quad \Delta H=+\mathrm{ve}$.
18 (c)
Two equivalent of each are used.
19 (a)
Isothermally (at constant temperature) and reversible work.

$$
\begin{aligned}
W & =2.303 n R T \log \frac{p_{2}}{p_{1}} \\
& =2.303 \times 1 \times 2 \times 300 \log \frac{10}{2} \\
& =2.303 \times 600 \times \log 5=965.84
\end{aligned}
$$

At constant temperature, $\Delta E=0$

$$
\Delta E=q+W, q=-W=-965.84 \mathrm{cal}
$$

(d)

The gaseous phase have more entropy and thus, ΔS is +ve in (a) and (b). Also decrease in pressure increases disorder and thus, ΔS is + ve in (c). In (d) the disorder decreases in liquid state due to decrease in temperature. Thus, $\Delta S=-$ ve.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	A	B	C	D	B	D	D	C	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	C	B	B	A	B	D	A	A	A		

