CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY
DPP No. : 2

Topic :-THERMODYNAMICS

1
(c)

Heat of formation of $\mathrm{H}_{2} \mathrm{O}=-$ heat of decomposition of water.
(a)
$T_{\text {firreversible }}>T_{\text {freversible }}$ it is an adiabatic expansion and $W(\mathrm{rev})$ is maximum.

(c)

Molecular solids are covalent compounds having low m.p.
(a)
$\Delta H=H_{P}-H_{R}$
Thus, ΔH is negative because $H_{P}<H_{R}$.
(b)
$\Delta G=-$ ve for a spontaneous change.
(d)

Ideal gas does not show intermolecular forces of attractions.
(b)

Rest all are correct .
(a)

During solidification disorder decreases.
(a)
$\Delta S=\frac{\Delta H_{f}}{T}=\frac{2930}{300}=9.77 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(d)
$\Delta G=\Delta H-T \Delta S$
The reaction will be spontaneous
If $T \Delta S>\Delta \mathrm{H} \quad$ (i.e., $\Delta G=-\mathrm{ve}$)
$T>\frac{\Delta H}{\Delta S}=\frac{170}{170 \times 10^{-3}}=1000 \mathrm{~K}$
(c)
θ is independent of initial amount as long as relative amount is constant
(b)
$q=\Delta U-W$, if adiabatic process $q=0$, then $-\Delta U=-W$, i.e., a decrease in free energy brings in work done by the system $(-W)$.
(a)

As the system is closed and insulated, no heat enter or leave the system, $i e, q=0$
$\therefore \Delta E=q+W=W$
(b)
$X Y \rightarrow X(\mathrm{~g})+Y(\mathrm{~g}) ; \Delta H=+a \mathrm{~kJ} / \mathrm{mol} \ldots$ (i)
$X_{2} \rightarrow 2 X ; \Delta H=+a \mathrm{~kJ} / \mathrm{mol}$
$Y_{2} \rightarrow 2 Y ; \Delta H=+0.5 a \mathrm{~kJ} / \mathrm{mol}$
$\frac{1}{2} \times\left(\right.$ ii) $+\frac{1}{2} \times($ iii $)-$ (i) gives
$\frac{1}{2} X_{2}+\frac{1}{2} Y_{2} \rightarrow X Y$
$\Delta H=\left(+\frac{a}{2}+\frac{0.5}{2} a-a\right) \mathrm{kJ} / \mathrm{mol}$
$\therefore-200=+\frac{a}{2}+\frac{0.5 a}{2}-a$
or $a=800$
(d)
$\mathrm{CH}_{4} \rightarrow \mathrm{C}+4 \mathrm{H} ; \Delta H=360 \mathrm{kcal} / \mathrm{mol}$ $e_{\mathrm{C}-\mathrm{H}}=90 \mathrm{kcal}$
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow 2 \mathrm{C}+6 \mathrm{H} ; \Delta H=620 \mathrm{kcal} / \mathrm{mol}$
$\therefore \quad 620=e_{\mathrm{C}-\mathrm{C}}+6 e_{\mathrm{C}-\mathrm{H}}$
$\therefore \quad e_{\mathrm{C}-\mathrm{C}}=620-540=80 \mathrm{kcal} / \mathrm{mol}$
(d)

Molecular weight of $\mathrm{NH}_{4} \mathrm{NO}_{3}=80$
\therefore Molar heat of decomposition
$H=m s \Delta t=80+1.23 \times 6.12$
$=602 \mathrm{~kJ} / \mathrm{mol}$
(b)

Greater is bond energy more is stability to bond.
(a)

Due to high bond energy of $\mathrm{N} \equiv \mathrm{N}$, more heat is absorbed to break up N_{2} molecule.
(a)
$\Delta S_{\text {vap }}=\frac{(900 \times 18)}{373}=43.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(b)

For spontaneous reaction $\Delta G=-\mathrm{ve}$.
$\Delta G=\Delta H-T \Delta S$
$\Delta H=+\mathrm{ve}, \Delta S=+\mathrm{ve}$ and $T \Delta S>\Delta H$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	A	C	A	B	D	B	A	A	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	B	A	B	D	D	B	A	A	B		

