CLASS : XIth DATE :

Solutions

DPP DAILY PRACTICE PROBLEMS

> SUBJECT : CHEMISTRY DPP No. : 2

Topic :- THERMODYNAMICS

1	(c)									
	Heat of formation of $H_2O = -$ heat of decomposition of water.									
2	(a) $T_{firreversible} > T_{freversible}$ it is an adiabatic expansion and $W(rev)$ is maximum.									
3	(c)									
	Molecular solids are covalent compounds having low m.p.									
4	(a)									
	$\Delta H = H_P - H_R$									
	Thus, ΔH is negative because $H_P < H_R$.									
5	(b)									
	$\Delta G = -$ ve for a spontaneous change.									
6	(d)									
	Ideal gas does not sho <mark>w inte</mark> rmolecular forces of attractions.									
7	(b)									
	Rest all are correct .									
8	(a)									
	During solidification disorder decreases.									
9	a)									
	$\Delta S = \frac{\Delta H_f}{T} = \frac{2930}{300} = 9.77 \text{ J mol}^{-1} \text{K}^{-1}$									
10	(d)									
	$\Delta G = \Delta H - T \Delta S$									
	The reaction will be spontaneous									
	If $T\Delta S > \Delta H$ (<i>i.e.</i> , $\Delta G = -ve$)									
	$T > \frac{\Delta H}{\Delta S} = \frac{170}{170 \times 10^{-3}} = 1000 \text{ K}$									
	$T > \frac{1}{\Delta S} = \frac{1}{170 \times 10^{-3}} = 1000 \text{ K}$									
11	(c)									
	heta is independent of initial amount as long as relative amount is constant									
12	(b)									
	$q = \Delta U - W$, if adiabatic process $q = 0$, then $-\Delta U = -W$, <i>i.e.</i> , a decrease in free energy									
	brings in work done by the system $(-W)$.									

13 (a)

> As the system is closed and insulated, no heat enter or leave the system, ie, q = 0 $\therefore \Delta E = q + W = W$

14 **(b)**

$$XY \to X(g) + Y(g); \Delta H = +a \text{ kJ/mol ...(i)}$$

 $X_2 \to 2X; \Delta H = +a \text{ kJ/mol ...(ii)}$
 $Y_2 \to 2Y; \Delta H = +0.5a \text{ kJ/mol ...(iii)}$
 $\frac{1}{2} \times (ii) + \frac{1}{2} \times (iii) - (i) \text{ gives}$
 $\frac{1}{2}X_2 + \frac{1}{2}Y_2 \to XY$
 $\Delta H = \left(+ \frac{a}{2} + \frac{0.5}{2}a - a \right) \text{kJ/mol}$
 $\therefore -200 = + \frac{a}{2} + \frac{0.5a}{2} - a$
or $a = 800$
15 **(d)**
15 **(d)**
16 **(d)**
16 **(d)**
Molecular weight of NH₄NO₃ = 80
 \therefore Molar heat of decomposition
 $H = ms\Delta t = 80 + 1.23 \times 6.12$
 $= 602 \text{ kJ/mol}$
17 **(b)**

Greater is bond energy more is stability to bond.

18 (a)

Due to high bond energy of $N \equiv N$, more heat is absorbed to break up N_2 molecule.

$$\Delta S_{\rm vap} = \frac{(900 \times 18)}{373} = 43.4 \, \rm J K^{-1} mol^{-1}$$

20

(b)

For spontaneous reaction
$$\Delta G = -$$
 ve.
 $\Delta G = \Delta H - T\Delta S$
 $\Delta H = +$ ve, $\Delta S = +$ ve and $T\Delta S > \Delta H$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	С	А	C	A	В	D	В	А	A	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	С	В	A	В	D	D	В	А	A	В		

