

CLASS: XIth **SUBJECT: CHEMISTRY** DATE: **DPP No.: 10**

1.	$C_{\text{diamond}} + O_2(g) \rightarrow CO_2(g); \Delta H = -395 \text{ kJ}(i)$
C_{graphit}	$_{\text{te}} + O_2(g) \rightarrow CO_2(g); \ \Delta H = -393.5 \text{ kJ}(ii)$
The ΛB	T when diamond is formed from granhite is:

a) -1.5 kJ

b) $+ 1.5 \, \text{kJ}$

c) + 3.0 kJ

d) -3.0 kJ

Entropy change of fusion at constant pressure is given by:

a) $\Delta S_{(f)} = \frac{\Delta H_f}{T}$

b) $\Delta S_{(f)} = \frac{\Delta G_f}{T}$

c) $\Delta S_{(f)} = \frac{\Delta H_f}{\Delta T}$

d) None of

these

At 27°C, one mole of an ideal gas is compressed isothermally and reversibly from a pressure of 2 atm to 10 atm. The values of ΔE and q are (R = 2)

a) 0, -965.84 cal

b) -965.84 cal, -865.58 cal

c) +865.58 cal, -865.58 cal

d) -865.58 cal, -865.58 cal

When hydrogen and oxygen burn to form water in an oxyhydrogen torch, the entropy change 4. is:

a) Negative

b) Positive

c) Zero

d) May be positive or negative

The temperature coefficient of e.m.f. of a cell can be given by:

a) $\left(\frac{\partial E}{\partial T}\right)_P = \frac{\Delta S}{nF}$

b) $\left(\frac{\partial E}{\partial T}\right)_P = \left(\frac{E_2 - E_1}{T_2 - T_1}\right)_P$ c) $\left(\frac{\partial E}{\partial T}\right)_P = \left[\frac{\Delta H}{nF} + E\right]\frac{1}{T}$ d) All of these

The internal energy of one mole of a gas is:

a) $\frac{3}{2}RT$

c) $\frac{RT}{2}$

The resultant heat change in a reaction is the same whether it takes place in one or several stages. This statement is called

a) Lavoisier and Laplace law

b) Hess's law

c) Joule's law

d) Le-Chatelier's principle

 ΔH for transition of carbon in the diamond form to carbon in the graphite form, is – 453.5 cal. This suggests that:

a) Graphite is chemically different from diamond

b) Graphite is as stable as diamond

c) Graphite is more stable than diamond

	d) Diamond is more stable than graphite					
9.	The enthalpy of fusion of ice per mole is					
	a) 18 kJ	b) 8 kJ	c) 80 kJ	d) 6 kJ		
10.	For the reversible vaporis	ation of water at 100°C an	d 1 atmospheric pressure, 2	ΔG is equal to:		
	a) Δ <i>H</i>	b) Δ <i>S</i>	c) Zero	d) $\Delta H/T$		
11.	Molar heat of vaporisation	n of a liquid is 6 kJmol $^{-1}$. If	the entropy change is 16 J	$mol^{-1}K^{-1}$, the		
boili	ng point of the liquid is					
	a) 273 K	b) 375°C	c) 375 K	d) 102°C		
12.	The enthalpy of fusion of	water is 1.435 kcal/mol. Tl	ne molar entropy change for	r the melting of		
ice a	t 0°C is:					
	a) 5.260 cal/(mol K)	b) 0.526 cal/(mol K)	c) 10.52cal/(mol K)	d) 21.04		
cal/	(mol K)					
13.	Which of the following i	s an endothermic reacti	on?			
	a) $N_2(g) + 3H_2(g) - 92k$		b) $N_2(g) + O_2(g) + 180.8$	$3 \text{ kJ} \rightarrow 2 \text{NO(g)}$		
	c) $H_2(g) + Cl_2(g) \rightarrow 2HCl$		d) $C(graphite) + 2H_2(g)$, (6)		
	c) 112(g) 1 d12(g) 1211d1	+74.8 kJ	u) ((grupinte) 2112(g)	70114(8)		
11	The AC in the present of r	•				
14.	The ΔG in the process of n a) $\Delta G = -ve$	b) $\Delta G = +ve$	c) $\Delta G = 0$	d) All of those		
15	A container has hydrogen			d) All of these		
13.	a) Internal energy of the r		b) Internal energy of the n	nivtura		
incr	eases	ilixtui e deci eases	b) internal energy of the i	mature		
mer	c) Entropy of the mixture	increases	d) Entropy of the mixture	docroses		
16			u) Littropy of the mixture	uccicases		
10.	Which one is not a spontan <mark>eous process?</mark> a) Dissolution of CuSO ₄ in water					
	-					
	b) Water flowing down the hillsc) Flow of current from low potential to high potential					
	d) None of the above					
17		L volume is evnanded aga	inst a constant external pre	ssure of 1 atm		
	volume of 15 litre. The wo		mst a constant external pre	ssure or 1 acm		
	_		c) 121.5×10^3 J	d) None of		
thes		0) 12.13 × 10)	c) 121.3 × 10)	uj None or		
18.		ng the combustion of 112 l	itre of water gas (mixture o	of equal volume		
	and CO) is:	ig the combustion of 112 i	itie of water gas (mixture t	or equal volume		
	-					
	$(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g); \Delta H =$					
CO(§	$g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g); \Delta H$					
	a) 241.8 kJ	b) 283 kJ	c) – 1312 kJ	d) 1586 kJ		
19. Work done in reversible adiabatic process is given by:						
	. 1	b) $\frac{nR}{(\gamma - 1)}(T_2 - T_1)$	c) $2.303 RT \log \frac{V_1}{V_2}$	d) None of		
thes	e					

- 20. The H—H bond energy is 430 kJ mol^{-1} and Cl—Cl bond energy is 240 kJ mol^{-1} . ΔH for HCl is —90 kJ. The H—Cl bond energy is about:
 - a) 425 kJ mol^{-1}
- b) 213 kJ mol⁻¹
- c) 360 kJ mol^{-1}
- d) 180 kJ

 mol^{-1}

