CLASS : XIth
DATE :
Solutions

1
(b)

By eq. (ii) - (i),

$$
\mathrm{C}_{\mathrm{G}} \rightarrow \mathrm{C}_{\mathrm{D}} ; \quad \Delta H=+1.5 \mathrm{~kJ}
$$

(a)

This is derived formula.
(a)
$W=2.303 n R T \log \frac{p_{2}}{p_{1}}$
$=2.303 \times 1 \times 2 \times 300 \log \frac{10}{2}=965.84$
At constant temperature, $\Delta E=0$
$\Delta E=q+W$;
$q=-W=-965.84 \mathrm{cal}$
(a)
$\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta n=-1 / 2$ and thus, ΔS decreases or -ve
(d)
$\Delta G=\Delta H+T\left[\frac{\partial \Delta G}{\partial T}\right]_{P}$ (Gibbs-Helmholtz equation)
Also, $\Delta G=\Delta H-T \Delta S$; and $-\Delta G=n F \cdot E$
$\therefore \quad \Delta G-\Delta H=-T \Delta S$
or $-T \Delta S=T\left[\frac{\partial \Delta G}{\partial T}\right]_{P}=T\left(\frac{-n F \partial E}{\partial T}\right)_{P}$
or $\left[\frac{\partial E}{\partial T}\right]_{P}=\frac{\partial S}{n F}$; similarly derive for other values.
(a)

Internal energy of 1 mole of gas $=\frac{3}{2} R T$
(c)
$C_{D} \rightarrow C_{G} ; \Delta H=-453.5 \mathrm{cal}$,
i.e., Energy of C_{G} is less and thus, more stable.
(c) At equilibrium $\Delta G=0$.
(c)
$\Delta S=16 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$T_{\text {b.p }}=\frac{\Delta H_{\text {vapour }}}{\Delta S_{\text {vapour }}}=\frac{6 \times 1000}{16}$
$=375 \mathrm{~K}$
(a)
$\Delta S=\frac{\Delta H}{T}=\frac{1.435 \times 10^{3}}{273}=5.260 \mathrm{cal} \mathrm{mole}^{-1} \mathrm{~K}^{-1}$
(b)

Endothermic reactions are those in which heat energy is absorbed.
(b)

The melting of ice at $-15^{\circ} \mathrm{C}$ is not an spontaneous process.
(c)

Mixing of gases increases the entropy
(c)

Current flows from higher potential to lower one.
(a)

$$
\begin{aligned}
& -W_{\text {irr. }}=P_{\text {ext. }}\left(V_{2}-V_{1}\right) \\
& =1 \times(15-3)=12 \text { litre atm } \\
& =\frac{12 \times 1.987 \times 4.184}{0.0821} \\
& =1.215 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

(c)
ΔH for combustion of 56 litre $\mathrm{H}_{2}=\frac{-24.1 \times 56}{22.4}$
ΔH for combustion of 56 litre $\mathrm{CO}=\frac{-263 \times 56}{22.4}$
\therefore Total $\Delta H=-1312 \mathrm{~kJ}$
(b)

This is the derived formula for $W_{\text {rev }}$ in adiabatic process.
(a)
$\frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{HCl} ; \quad \Delta H=-90 \mathrm{~kJ}$
$\therefore \quad \Delta H=\frac{1}{2} e_{\mathrm{H}-\mathrm{H}}+\frac{1}{2} e_{\mathrm{Cl}-\mathrm{Cl}}$
or $\quad-90=\frac{1}{2} \times 430+\frac{1}{2} \times 240-e_{\mathrm{H}-\mathrm{Cl}}$
$\therefore \quad e_{\mathrm{H}-\mathrm{Cl}}=425 \mathrm{~kJ} \mathrm{~mol}^{-1}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	A	A	A	D	A	B	C	D	C	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	A	B	B	C	C	A	C	B	A	

